Ειδικά η συγκεκριμένη δεν προτιμάται ποτέ.
Οι συνεχείς λύσεις είναι οι γραμμικές συναρτήσεις της μορφής f(χ)=αχ, α ε R.
Οι μη συνεχείς όμως, είναι αρκετά εξωτικές.
Για παράδειγμα, ας δεχτούμε προς στιγμήν ως δεδομένη την ύπαρξη μιας
βάσης αρρήτων Β:
Δηλαδή, ότι κάθε πραγματικός αριθμός χ γράφεται ως x=a*U+b*V...+c*W
όπου οι συντελεστές a,b,...,c είναι ρητοί και εξαρτώνται από το x, ενώ το σύνολο {U,V,...,W} περιέχεται στο Β.
Αρχικά, ορίζουμε την f επί του Β, με οποιονδήποτε τρόπο.
Μετά, για κάθε χ στο R και όχι στο Β, ορίζουμε f(χ)=a*f(U)+b*f(V)...+c*f(W).
Eίναι μια απλή άσκηση το ότι η f, παρότι ορίστηκε τυχαία στο σύνολο Β, ικανοποιεί την f(x+y)=f(x)+f(y).
Μια ακόμα ιδιότητα της f, διαισθητικά αναπάντεχη, είναι πως σε οποιοδήποτε διάστημα (a,b),
το σύνολο f(a,b) δεν είναι άνω ή κάτω φραγμένο.