Βοήθεια/Απορίες στην Άλγεβρα

δεν μπορώ καθόλου τις ανισώσεις που ανάγονται σε πολυωνυμικές με τις περιπτώσεις που πρέπει να πάρουμε όταν το ένα μέλος δεν βρίσκεται κάτω από υπόριζη ποσότητα!!!! Δες τε λίγο αυτό το συνημένο και πες τε που κάνω λάθος;

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Τελευταία επεξεργασία:
Για την (1) ξεκινάς σωστά και λες ότι για να έχει νόημα η ανίσωση θα πρέπει η υπόριζη ποσότητα να είναι >=0, δηλαδή (1)
Στην συνέχεια με αυτόν τον περιορισμό στο νου εξετάζεις χωριστά τις περιπτώσεις χ>=1 και χ<1. Σωστά λες επομένως ότι για χ<1 είναι αδύνατη. Ας εξετάσουμε τώρα τι γίνεται για χ>=1(2)

Εφ'όσον και τα δύο μέλη είναι >=0 για χ>=1 υψώνουμε στο τετράγωνο και παίρνουμε τις πιθανές λύσεις ή (3). Λέω πιθανές λύσεις γιατί δεν τις έχω ακόμα συναληθεύσει με τους αρχικούς περιορισμούς. Αν ζωγραφίσεις τον άξονα των πραγματικών θα δεις εύκολα ότι από την συναλήθευση των (1)(2)(3) προκύπτει τελικά ότι η ανίσωση αληθεύει για .

Για την δεύτερη άσκηση τώρα η ανίσωση έχει νόημα για κάθε χ αφού το υπόριζο είναι >= 0 για κάθε χ.
Τώρα για η ανίσωση αληθεύει. Για ψώνοντας στο τετράγωνο παίρνεις ότι κάτι που ισχύει πάντοτε(για κάθε χ>=1/2). Τελικά προκύπτει ότι η ανίσωση αληθεύει για κάθε χ.

Συμπερασματικά, η λύση μιας ανίσωσης προκύπτει από την συναλήθευση του όποιου συνόλου πιθανών λύσεων με τους αρχικούς περιορισμούς. Ελπίζω να μην σε μπέρδεψα

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Τελευταία επεξεργασία:
έτσι κι έτσι.Στην ένα πάντως έκανα τον άξονα των πραγματικών γι αυτό δεν μου βγήκε...

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Έχω κάνει 15000 επεξεργασίες στο αρχικό μήνυμα για να το κάνω όσο πιο σαφές γίνεται. Είχα κάνει αρχικά το λάθος ότι θεώρησα το χ>=1 σαν περιορισμό ενώ ο μόνος περιορισμός είναι ότι τα υπόριζα πρέπει να είναι >=0. Στην συνέχεια απλά διακρίνω περιπτώσεις(τα χ για τα οποία μπορώ να υψώσω στο τετράγωνο έναντι των χ που δεν επιτρέπεται να υψώσω στο τετράγωνο) και σε κάθε περίπτωση συναληθεύω αυτό που βρίσκω με τον αρχικό περιορισμό. Ας γράψουν κι άλλοι πάντως την άποψή τους, κανείς δεν ειναι αλάνθαστος.

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Οχι το κατάλαβα μια χαρά τελικά!!! Μην στενοχωριέσαι ευχαριστώ πολύ!!!:)

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Καλησπέρα ! καμια ιδεα ?
ln x/3 = lnx/3

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
ακριβώς αυτό.

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
ακριβώς αυτό.

Α'τρόπος:

Άρα,
Όμως,απο περιορισμό (του lnx) έχουμε ότι xE(0,+oo) !
Οπότε τελικά :



Β'τρόπος:



Άρα, και
Όμως,απο περιορισμό (του lnx) έχουμε ότι xE(0,+oo) !
Οπότε τελικά :




Ελπίζω να σε βοήθησα και να είμαι σωστός :D

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Τελευταία επεξεργασία:
Δίνεται η συνάρτηση με τύπο f(x) = (1-k²)ˣ

Για ποιές τιμές του k ορίζεται η f ?

Μια μικρή βοήθεια; :(

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Δίνεται η συνάρτηση με τύπο f(x) = (1-k²)ˣ
Για ποιές τιμές του k ορίζεται η f ?
(Μάλλον στην εκφώνηση χρειάζεται συμπλήρωμα "Για ποιές τιμές του k ορίζεται η f στο )
Το μόνο που δεν ορίζεται είναι το 0°. Άρα πρέπει 1-k² 0 ....

imagesqtbnANd9GcRjgu5LEorN4P9LpgycPgsPxB-2.jpg

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
(Μάλλον στην εκφώνηση χρειάζεται συμπλήρωμα "Για ποιές τιμές του k ορίζεται η f στο )
Το μόνο που δεν ορίζεται είναι το 0°. Άρα πρέπει 1-k² 0 ....

imagesqtbnANd9GcRjgu5LEorN4P9LpgycPgsPxB-1.jpg

Μα αν κ=0 τότε 1-k² ≠ 0 :S
Το 1-k πρέπει να είναι > 0 (?) οπότε k=1 [μόνο] ή δεν τα κατάλαβα και λέω ασυναρτησίες; :P

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Μα αν κ=0 τότε 1-k² ≠ 0 :S
Το 1-k πρέπει να είναι > 0 (?) οπότε k=1 [μόνο] ή δεν τα κατάλαβα και λέω ασυναρτησίες; :P
1-k² 0 => k ±1
imagesqtbnANd9GcTGHle0YVj52tSLK3MqYI0CZ3-1.jpg

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Αν κ =±1 ομως η συναρτηση δεν παιρνει τη μορφη φ(χ)=0 που οριζεται για χ μεγαλυτερο του 0?

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Δίνεται η συνάρτηση με τύπο f(x) = (1-k²)ˣ

Για ποιές τιμές του k ορίζεται η f ?

Μια μικρή βοήθεια; :(
Η συνάρτηση f(x)=α^x που ονομάζεται και εκθετική, ορίζεται για α>0. Αρα στην περίπτωσή σου 1-κ²>0 => -1<κ<1

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Δίνεται η Ποιο το κ ώστε η γραφική παράσταση της f να περνάει από το σημείο Ρ(1,1/2);

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Ευχαριστώ πολύ! :D
Δίνεται η Ποιο το κ ώστε η γραφική παράσταση της f να περνάει από το σημείο Ρ(1,1/2);

Βάζεις όπου χ το 1 και όπου y το ½ και βγαίνει.
Εν τω μεταξύ πιο πριν για την ίδια άσκηση ρώτησα.:P

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Ευχαριστώ πολύ! :D


Βάζεις όπου χ το 1 και όπου y το ½ και βγαίνει.
Εν τω μεταξύ πιο πριν για την ίδια άσκηση ρώτησα.:P

Οχ,δίκιο έχεις!:) Ευχαριστώ και για τη βοήθεια!

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Στο ίδιο σύστημα αξόνων να παραστήσετε γραφικά τις συναρτήσεις g(x)=2χ̅ και h(x)= -x²+3.
Αν Ε το εμβαδόν που περικλείεται από τις Cg,Ch και τον άξονα ΄χχ, να δείξετε ότι Ε>3̅. Κατά βάση το δεύτερο ερώτημα.

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Στο ίδιο σύστημα αξόνων να παραστήσετε γραφικά τις συναρτήσεις g(x)=2χ̅ και h(x)= -x²+3.
Αν Ε το εμβαδόν που περικλείεται από τις Cg,Ch και τον άξονα ΄χχ, να δείξετε ότι Ε>3̅. Κατά βάση το δεύτερο ερώτημα.
Οι δύο καμπύλες τέμνονται στο (1,2). Η g τέμνει τον χ'χ στο 0 και η h στο Ετσι, από το 0 έως το 1 το εμβαδόν είναι 4/3 και από το 1 έως το είναι Αρα συνολικα
Θα κατάλαβες ότι τα εμβαδά τα υπολόγισα με ολοκληρώματα.

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 

Χρήστες Βρείτε παρόμοια

Back
Top