tebelis13
Πολύ δραστήριο μέλος



να βρεθει η τιμη του λ ωστε το μεγιστο της συναρτησης f(x)=-(1-x)^2+2(1-λ)x να λαμβανει την ελαχιστη τιμη του.

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
arti
Νεοφερμένος


Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


Λοιπόν.
Η f(x) παρουσιάζει μέγιστο το:
Tώρα, σύμφωνα με την άσκηση, πρέπει το
παρουσιάζει την ελάχιστη τιμή του, δηλαδή το
Το

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος


Ωραία ασκησούλα.
Λοιπόν.
Η f(x) παρουσιάζει μέγιστο το:
Tώρα, σύμφωνα με την άσκηση, πρέπει τονα
παρουσιάζει την ελάχιστη τιμή του, δηλαδή το
να παρουσιάζει την ελάχιστη τιμή του.
Τοπαρουσιάζει την ελάχιστη τιμή του για
, οπότε
Εσύ που ξέρεις να κοιτάς να τα λύνεις με μονοτονία και σύνολα τιμών αυτά. Το ελάχιστο και μέγιστο τριωνύμου όπως το μαθαίνετε στην Α' Λυκείου είναι παπαγάλισμα τύπου.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


f(x)=αχ^2+βχ+γ, τοτε f'(x)=2αχ+β και μετά παίρνεις τα γνωστά και μη εξαιρετέα f'(x)>0 για να είναι γνησίως αύξουσα, f'(x)<0 για να είναι γνησίως φθίνουσα και μετά τις περιπτώσεις για τα α και μπλα μπλα και λες ότι εκεί που από φθίνουσα γίνεται αύξουσα παρουσιάζει ελάχιστο. :p
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος


Nαι αλλά η απόδειξη του τύπου βγαίνει με παράγωγο :p
Ε ναι, αυτό σου λέω. Μελέτη μονοτονίας ακροτάτων μέσω παραγώγου ξέρεις, δεν ξέρεις;
-----------------------------------------
Nαι αλλά η απόδειξη του τύπου βγαίνει και με παράγωγο :p
f(x)=αχ^2+βχ+γ, τοτε f'(x)=2αχ+β και μετά παίρνεις τα γνωστά και μη εξαιρετέα f'(x)>0 για να είναι γνησίως αύξουσα, f'(x)<0 για να είναι γνησίως φθίνουσα και μετά τις περιπτώσεις για τα α και μπλα μπλα και λες ότι εκεί που από φθίνουσα γίνεται αύξουσα παρουσιάζει ελάχιστο. :p
Μπορείς αντι να λύσεις ανίσωση, να βάλεις τυχαία τιμή στο διάστημα και να πεις ότι λόγω συνέχειας, μη μηδενισμού στο διάστημα, διατηρεί πρόσημο λόγω Bolzano.

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


Εγώ για την απόδειξη μιλάω.
:p
Πέρα από την πλάκα, παίζει να γράψω τίποτα τέτοιο στην Άλγεβρα φέτος

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος


Nαι αλλά η απόδειξη του τύπου βγαίνει και με παράγωγο :p
f(x)=αχ^2+βχ+γ, τοτε f'(x)=2αχ+β και μετά παίρνεις τα γνωστά και μη εξαιρετέα f'(x)>0 για να είναι γνησίως αύξουσα, f'(x)<0 για να είναι γνησίως φθίνουσα και μετά τις περιπτώσεις για τα α και μπλα μπλα και λες ότι εκεί που από φθίνουσα γίνεται αύξουσα παρουσιάζει ελάχιστο. :p
Στη Γ' Λυκείου απ'ότι το κόβω, μόνο με ολοκληρώματα θ'ασχοληθείς, τα άλλα τα ξέρεις κι απο τώρα.

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


Στη Γ' Λυκείου απ'ότι το κόβω, μόνο με ολοκληρώματα θ'ασχοληθείς, τα άλλα τα ξέρεις κι απο τώρα.![]()
Το ολοκλήρωμα

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
tebelis13
Πολύ δραστήριο μέλος



α)Απο ολους τους αριθμους χ,ψ με σταθερο αθροισμα α (χ+ψ=α) να βρεθουν εκεινοι που εμφανιζουν το μεγιστο γινομενο
β)Απο ολους τους θετικους χ,ψ με σταθερο γινομενο β (χψ=β) να βρεθουν εκεινοι που εμφανιζουν το ελαιστο αθροισμα...

Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
miv
Επιφανές μέλος


Το ολοκλήρωμαυπολογίζει το εμβαδό του χωρίου που περικλείεται από τις κάθετες x=a,x=b, τη γραφική παράσταση της f(x) και τον άξονα x'x. :p (Σημαντική προυπόθεση f(x)>0: Δεν υπάρχει αρνητικό εμβαδό.) :fss:
![]()
Βάζεις τη συνάρτηση f μέσα σε απόλυτο και εισαι οκ.
Για την ύλη της Γ' Λυκείου, γενικής παιδείας, αυτά είναι βασικές εφαρμογές, δεν είναι εξυπνα προβλήματα.


-----------------------------------------
Το ολοκλήρωμαυπολογίζει το εμβαδό του χωρίου που περικλείεται από τις κάθετες x=a,x=b, τη γραφική παράσταση της f(x) και τον άξονα x'x. :p (Σημαντική προυπόθεση f(x)>0: Δεν υπάρχει αρνητικό εμβαδό.) :fss:
![]()
Οκ, θα κάνεις μιγαδικούς, όρια, συνέχεια και παραγωγισιμότητα. Επίσης κυρτά/κοίλα, ασύμπτωτες.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


Αυτοί που ικανοποιούν τη σχέση

Άντε και για το β.
Aυτοί που ικανοποιούν τη σχέση
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
PGeorge4
Πολύ δραστήριο μέλος


Παιδες βαζω και εγω μια καλη ασκησουλα
να βρεθει η τιμη του λ ωστε το μεγιστο της συναρτησης f(x)=-(1-x)^2+2(1-λ)x να λαμβανει την ελαχιστη τιμη του.![]()
στο f(x) το α=-1 αρα παρουσιαζει μέγιστο ,το μεγιστο ειναι το -β/2α και οχι το -Δ/4α σωστα ?Ωραία ασκησούλα.
Λοιπόν.
Η f(x) παρουσιάζει μέγιστο το:
Tώρα, σύμφωνα με την άσκηση, πρέπει τονα
παρουσιάζει την ελάχιστη τιμή του, δηλαδή το
να παρουσιάζει την ελάχιστη τιμή του.
Τοπαρουσιάζει την ελάχιστη τιμή του για
, οπότε
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


στο f(x) το α=-1 αρα παρουσιαζει μέγιστο ,το μεγιστο ειναι το -β/2α και οχι το -Δ/4α σωστα ?
To μέγιστο είναι το -Δ/4α και το παρουσιαζει για χ=-β/2α.
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
PGeorge4
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


Απλά :p
(Mάλιστα κινείται και η ευθεία μαζί με το σημείο, ενδιαφέρον) :p
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
rolingstones
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
djimmakos
Διάσημο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
tebelis13
Πολύ δραστήριο μέλος


just thisΤο ελάχιστο κινείται πάνω στην κάθετη ευθεία χ=-β/2α και μας ζητάει να βρούμε την τιμή του λ για την οποία το ελάχιστοv δεν πάει πιο πάνω, φρακάρει..
Απλά :p
(Mάλιστα κινείται και η ευθεία μαζί με το σημείο, ενδιαφέρον) :p

:no1:
Σημείωση: Το μήνυμα αυτό γράφτηκε 15 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 3 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 51 μέλη διάβασαν αυτό το θέμα:
- akis_95
- cment
- Fanimaid123
- Satan Claus
- eva987
- _Aggelos123
- Cat lady
- Γιούρα
- spring day
- ggl
- tsiobieman
- Σωτηρία
- το κοριτσι του μαη
- eukleidhs1821
- Georgekk
- SlimShady
- Scandal
- Lia 2006
- Alexandros36k
- 69lover
- TonyMontanaEse
- Unboxholics
- Arvacon
- rafaela11
- Hara_2
- manos66
- Ryuzaki
- Giii
- Athens2002
- barkos
- ssalex
- anastasiakan
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.