Papachrist
Νεοφερμένο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


ΣΤΟ Β3 xωρις να ειμαι σιγουρος δνε εχει λυση.Αν παρεις την αντιστροφη του πρωτου μελους και την αντιστροφη του δευτερου μελους γνωστη ιδιοτητα αντιστροφη μεσα στη συναρτηση δινει το μεσα βγαζεις f^-1(απολυτο χ-3)-f^-1(-1)=1>0 (1)ομως ξερω οτι η αντιστροφη ειναι γνησιως φθινουσα δεν ξερω αν πρεπει να αποδειχτει προφανως απολυτο (χ-3)>-1 αρα f^-1(απολυτο χ-3)-f^-1(-1)<0 Oποτε η (1) ειναι αδυνατη.Ας τη λυσει και ο μαρκος ο βασιλης
Β4.Γνωριζουμε οτι το οριο της f στο +00 ειναι -00 αρα κοντα στο +00 καταχρηστικα υπαρχει κ>0 φ(κ)<0 το ιδιο με το οριο της f στο -00 φ(λ)<0 Mpolzano στο [κ,λ] αποδειχτηκε
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
The Limit Does Not Exist
Νεοφερμένο μέλος


Δηλαδή, 1-2f(2)+f(3)=0, άρα f(3)=2f(2)-1
Αν αυτό το αντικαταστήσεις στο όριο θα σου βγει γιατι ο αριθμητής θα γίνει χ^2-1-2χf(2)+2f(2)=(x-1)(x+1)-2f(x)(x-1)=(x-1)(x+1-2f(2)). Το χ-1 θα απλοποιηθεί γιατί έχεις χ-1 και στον παρονομαστή. Αρα θα προκύψει 2-2f(2)=4
f(2)=-1
Επειδη είχαμε βρει ότι f(3)=2f(2)-1
θα είναι f(3)=-3<f(2)
Και επειδή ξέρουμε οτι η f είναι γνησίως μονότονη, θα είναι γνησίως φθίνουσα αφου 2< 3 και f(2)>f(3)
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


Σωστο.Δεν σκεφτηκα να γυρισω πισω που να φανταστω οτι θα υπολογιζοταν το οριο.Πολυ πονηρο θεμαΘέτοντας το κλάσμα ίσο με g(x) προκύπτει με μια χιαστί ότι το όριο του αριθμητή στο 1 είναι 0.
Δηλαδή, 1-2f(2)+f(3)=0, άρα f(3)=2f(2)-1
Αν αυτό το αντικαταστήσεις στο όριο θα σου βγει γιατι ο αριθμητής θα γίνει χ^2-1-2χf(2)+2f(2)=(x-1)(x+1)-2f(x)(x-1)=(x-1)(x+1-2f(2)). Το χ-1 θα απλοποιηθεί γιατί έχεις χ-1 και στον παρονομαστή. Αρα θα προκύψει 2-2f(2)=4
f(2)=-1
Επειδη είχαμε βρει ότι f(3)=2f(2)-1
θα είναι f(3)=-3<f(2)
Και επειδή ξέρουμε οτι η f είναι γνησίως μονότονη, θα είναι γνησίως φθίνουσα αφου 2< 3 και f(2)>f(3)
Αυτόματη ένωση συνεχόμενων μηνυμάτων:
Τo τελευταιο ερωτημα βγαζεις κοινο παραγοντα το ημχ μεσα στη παρενθεση εχεις ημ^2χ+συν^2χ=1 αρα ημχ/f^2016 απολυτοημχ/f^2016<=1/f^2016 κανεις κριτηριο παρεμβολης βγηκε 0 το οριο
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
The Limit Does Not Exist
Νεοφερμένο μέλος


f(f-1(|x-3|-1))=f(2)
Eπειδη η f είναι γν. μονότονη θα είναι και "1-1". Άρα
f-1(|x-3|) - 1=2 <=> f-1(|x-3|)=3
Είναι f(3)=-3 <=> f-1(-3)=3
Δηλαδή η εξίσωση γίνεται f-1(|x-3|)=f-1(-3) <=> |x-3|=-3, που προφανώς είναι αδύνατο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


σωστο.απλα εσυ ειχες μπορεσει να βρεις επακριβως τα φ(2),φ(3) που σε βοηθησαν στη λυση της εξισωσης.εγω το πηγα πιο γενικα αλλα δεν ξερω αν ειναι σωστοΜια σκέψη κ από μένα για το Β3: Επειδή έχουμε βρει ότι f(2)=-1, η εξίσωση γίνεται
f(f-1(|x-3|-1))=f(2)
Eπειδη η f είναι γν. μονότονη θα είναι και "1-1". Άρα
f-1(|x-3|) - 1=2 <=> f-1(|x-3|)=3
Είναι f(3)=-3 <=> f-1(-3)=3
Δηλαδή η εξίσωση γίνεται f-1(|x-3|)=f-1(-3) <=> |x-3|=-3, που προφανώς είναι αδύνατο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
The Limit Does Not Exist
Νεοφερμένο μέλος


Ειναι σιγουρα -2f(2) και οχι σκετο -f(2)?Mπορεις να θεσεις το κλασμα κοντα στο 1 g(x) αρα το οριο του αριθμητη ειναι 0.Aρα μπορουμε να βγαλουμε το οριο του -2f(2)x+f(3)=-1<0 αρα κοντα στο 1 -2f(2)x+f(3)<0 αρα για χ=1/2 f(3)-f(2)<0 f(2)>f(3) λογω οτι ειναι γνησιως μονοτονη βγαινει γν φθινουσα.Ας απαντησει ο μαρκος ο βασιλης αν μπορεις να το ισχυριστεις αυτο.Γτ η εννοια του κοντα ειναι κατι σχετικο.Ποσο κοντα?
Αυτόματη ένωση συνεχόμενων μηνυμάτων:
ΣΤΟ Β3 xωρις να ειμαι σιγουρος δνε εχει λυση.Αν παρεις την αντιστροφη του πρωτου μελους και την αντιστροφη του δευτερου μελους γνωστη ιδιοτητα αντιστροφη μεσα στη συναρτηση δινει το μεσα βγαζεις f^-1(απολυτο χ-3)-f^-1(-1)=1>0 (1)ομως ξερω οτι η αντιστροφη ειναι γνησιως φθινουσα δεν ξερω αν πρεπει να αποδειχτει προφανως απολυτο (χ-3)>-1 αρα f^-1(απολυτο χ-3)-f^-1(-1)<0 Oποτε η (1) ειναι αδυνατη.Ας τη λυσει και ο μαρκος ο βασιλης
Αυτόματη ένωση συνεχόμενων μηνυμάτων:
Β4.Γνωριζουμε οτι το οριο της f στο +00 ειναι -00 αρα κοντα στο +00 καταχρηστικα υπαρχει κ>0 φ(κ)<0 το ιδιο με το οριο της f στο -00 φ(λ)<0 Mpolzano στο [κ,λ] αποδειχτηκε
Στο Β4 μετά το Bolzano δεν πρέπει να αναφέρουμε και το ότι η f είναι "1-1", (άρα θα έχει το πολύ 1 ρίζα), για να αποδείξουμε τη μοναδικότητα της ρίζας;
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


ναι το ξεχασα απο κεκτειμενη.εφοσον ειναι γν.φθινουσα και εχω βρει μια ριζα αυτη ειναι μοναδικηΣτο Β4 μετά το Bolzano δεν πρέπει να αναφέρουμε και το ότι η f είναι "1-1", (άρα θα έχει το πολύ 1 ρίζα), για να αποδείξουμε τη μοναδικότητα της ρίζας;
Αν εξαιρεσεις τα 3 ερωτηματα που ναι αρκετα κλασσικα αν επεφτε σε πανελλαδικες θα κλαιγανε παρα πολλοι.ειδικα το πρωτο ερωτημα ουδεις δε θα το κανε.Αν και πιστευω θα το διατυπωνανε αλλιως θα σου λεγανε υπολογισε μου τις τιμες f(2),f(3) οτι κανει τοσο και βρες μου την μονοτονια.δε θα στο δινε μονοκομματο ετσι.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
The Limit Does Not Exist
Νεοφερμένο μέλος


Στο Β5 ο αριθμητής είναι ημχ( (ημχ)^2 + (συνχ)^2)=ημχΜπορεί κανείς να στείλει λύσεις σύντομα γιατί αύριο θα λείπω από το σπίτι λόγω οικογενειακών υποχρεώσεων ( είμαι η αδερφή του χρήστη
View attachment 69553
|ημχ/(f(x))^2016|<= |1/f(x)^2016|
<=> -|1/f(x)^2016|<= ημχ/f(x)^2016 <= |1/f(x)^2016|
Από το σύνολο τιμών που σου δίνει, το όριο της f στο +οο είναι +οο
Άρα lim(-|1/f(x)^2016|) όταν χ->+οο = lim|1/f(x)^2016| όταν χ->+οο = 0
Από κριτήριο παρεμβολής και το όριο του ημχ/f(x)^2016 στο +oo είναι 0
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


το οριο της f στο +00 ειναι -00.την ιδια λυση γραψαμεΣτο Β5 ο αριθμητής είναι ημχ( (ημχ)^2 + (συνχ)^2)=ημχ
|ημχ/(f(x))^2016|<= |1/f(x)^2016|
<=> -|1/f(x)^2016|<= ημχ/f(x)^2016 <= |1/f(x)^2016|
Από το σύνολο τιμών που σου δίνει, το όριο της f στο +οο είναι +οο
Άρα lim(-|1/f(x)^2016|) όταν χ->+οο = lim|1/f(x)^2016| όταν χ->+οο = 0
Από κριτήριο παρεμβολής και το όριο του ημχ/f(x)^2016 στο +oo είναι 0
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
The Limit Does Not Exist
Νεοφερμένο μέλος


Ναι ναι έχετε δίκιο, -00 είναι αφου η f είναι γν. φθίνουσατο οριο της f στο +00 ειναι -00.την ιδια λυση γραψαμε
(Δεν είχα δει ότι το είχατε λύσει κ εσείς

Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


δεν πειραζει καλα κανεις που το ελυσες.δεν δινω εγω εξετασεις εσυ δινεις.παντως ποσες φορες παιζει να χει πεσει αυτο το οριο στις πανελληνιες.αμετρητες φορες.και πολλοι δεν ξερουν καν οτι πρεπει να κανεις κριτηριο παρεμβολης.αμα εχουν της πλακας καθηγητες λογικοΝαι ναι έχετε δίκιο, -00 είναι αφου η f είναι γν. φθίνουσα
(Δεν είχα δει ότι το είχατε λύσει κ εσείς)
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Papachrist
Νεοφερμένο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.


Εστω οτι έχω μια συνεχη συναρτηση f(x) η οποια ειναι μικροτερη απο το μηδεν σε ενα διαστημα και μια g(x) επισης συνεχης η οποια ειναι μεγαλυτερη του μηδενος στο ιδιο διστημα
Αν θεωρω ωσ μια h(x) το αθροισμα τους μπορω να πω οτι η h ειναι διαφορη απο το μηδεν και αφου ειναι και συνεχης θα διατηρει σταθερο προσημο?
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
The Limit Does Not Exist
Νεοφερμένο μέλος


Νομίζω πως όχι, θα έπρεπε να είναι και οι 2 θετικές ή και οι 2 αρνητικές. Με αυτά τα δεδομένα μόνο η διαφορά τους βγαίνει διαφορη του 0. Εκτός και αν σου δίνει κάποιο άλλο δεδομένο η άσκησηπαιδια καλησπερα ,θα ηθελα καποιος αν μπορει να μου λυσει την απορια
Εστω οτι έχω μια συνεχη συναρτηση f(x) η οποια ειναι μικροτερη απο το μηδεν σε ενα διαστημα και μια g(x) επισης συνεχης η οποια ειναι μεγαλυτερη του μηδενος στο ιδιο διστημα
Αν θεωρω ωσ μια h(x) το αθροισμα τους μπορω να πω οτι η h ειναι διαφορη απο το μηδεν και αφου ειναι και συνεχης θα διατηρει σταθερο προσημο?
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


αν εννοεις τη διαφορα τους ναι ισχυει.αν εννοεις το αθροισμα κατηγορηματικα οχιπαιδια καλησπερα ,θα ηθελα καποιος αν μπορει να μου λυσει την απορια
Εστω οτι έχω μια συνεχη συναρτηση f(x) η οποια ειναι μικροτερη απο το μηδεν σε ενα διαστημα και μια g(x) επισης συνεχης η οποια ειναι μεγαλυτερη του μηδενος στο ιδιο διστημα
Αν θεωρω ωσ μια h(x) το αθροισμα τους μπορω να πω οτι η h ειναι διαφορη απο το μηδεν και αφου ειναι και συνεχης θα διατηρει σταθερο προσημο?
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μάρκος Βασίλης
Πολύ δραστήριο μέλος


παιδια καλησπερα ,θα ηθελα καποιος αν μπορει να μου λυσει την απορια
Εστω οτι έχω μια συνεχη συναρτηση f(x) η οποια ειναι μικροτερη απο το μηδεν σε ενα διαστημα και μια g(x) επισης συνεχης η οποια ειναι μεγαλυτερη του μηδενος στο ιδιο διστημα
Αν θεωρω ωσ μια h(x) το αθροισμα τους μπορω να πω οτι η h ειναι διαφορη απο το μηδεν και αφου ειναι και συνεχης θα διατηρει σταθερο προσημο?
Όχι. Πάρε f(x)=x και g(x)=-x στο (0,1). Θετική η μία, αρνητική η άλλη αλλά το άθροισμά τους είναι f(x)+g(x)=0 στο (0,1).
Γενικότερα, μπορείς να αποδείξεις ότι κάθε συνάρτηση - όχι κατ' ανάγκη συνεχής - προκύπτει ως το άθροισμα μίας μη αρνητικής και μίας αρνητικής συνάρτησης - οπότε δεν ισχύει καθόλου αυτό που αναφέρεις. Πώς όμως έφτασες σε αυτό το συμπέρασμα;
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.


Απλα ετυχε να συναντησω σε μια ασκηση δυσκολες πραξεις και δεν μπορουσα να το αντιμετωπισω με παραγωγο,μονοτονια και ακροτατα και ετσι το σκεφτηκα ως την εσχατη λυση
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


πως αποδεικνυεται αυτο απο περιεργιαΌχι. Πάρε f(x)=x και g(x)=-x στο (0,1). Θετική η μία, αρνητική η άλλη αλλά το άθροισμά τους είναι f(x)+g(x)=0 στο (0,1).
Γενικότερα, μπορείς να αποδείξεις ότι κάθε συνάρτηση - όχι κατ' ανάγκη συνεχής - προκύπτει ως το άθροισμα μίας μη αρνητικής και μίας αρνητικής συνάρτησης - οπότε δεν ισχύει καθόλου αυτό που αναφέρεις. Πώς όμως έφτασες σε αυτό το συμπέρασμα;
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 230 μέλη διάβασαν αυτό το θέμα:
- giannis06
- Panagiwths12
- mikke
- hristosdab
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.