Θεωρούμε τον μιγαδικό αριθμό
και μια συνάρτηση
, η οποία είναι
. Aν η συνάρτηση
δεν είναι
, να υπολογίσετε τους πραγματικούς αριθμούς
, ώστε ο
να είναι ρίζα της εξίσωσης
,
Θεωρούμε την συνάρτηση h(x)=α(x^3)+βx+γ όπου
α=(Re(z)-(SQRT(3)/2))^2
β=|1-|z||
γ=-2013
Αν α=0 και β=0 τότε έχουμε
α=0 => Re(z)=SQRT(3)/2
β=0 => |z|=1 => |z|^2=1 => (Re(z)^2)+(Im(z)^2)=1 => (SQRT(3)/2)^2+ (Im(z)^2)=1 => Im(z)=1/2
Άρα για z=SQRT(3)/2+(1/2)i=z0 είναι α=β=0
Θεωρούμε την συνάρτηση h(x)=α(x^3)+βx+γ όπου α,β,γ έχουν οριστεί παραπάνω. Η h είναι συνεχής και παραγωγίσιμη στο R ως πολυvνυμική με πρώτη παράγωγο h΄(x)=3α(x^2)+β
Αν z διάφορο z0 τότε α>=0 και β>0 ή α>0 και β>=0. Επομένως h΄(x)>0 για κάθε x ανήκει R. Άρα η h είναι γνησίως αύξουσα, οπότε είναι και 1-1.
Η συνάρτηση g γράφεται στη μορφή g(x)=h(f(x))=(hof)(x), x ανήκει R. Επειδή η g δεν είναι 1-1 τότε υπάρχουν x1, x2 στο R με x1<x2 τέτοια ώστε g(x1)=g(x2) και f(x1) διάφορο f(x2) (εφόσον η f είναι 1-1). Αυτό όμως είναι άτοπο επειδή οι f και h είναι 1-1 καθώς τότε θα είναι:
g(x1)=g(x2) => h(f(x1))=h(f(x2)) => f(x1)=f(x2) (εφόσον h 1-1)
Άτοπο επειδή η f είναι 1-1
Άρα δεν μπορεί να ισχύει z διάφορο z0 που σημαίνει ότι z=z0=SQRT(3)/2+(1/2)i
Έχουμε
z=SQRT(3)/2+(1/2)i
z^2=(1/2)+(SQRT(3)/2)i
Αντικαθιστώντας στην εξίσωση (z^2)-mz+n=0 καταλήγουμε στην εξίσωση:
[n+((1-mSQRT(3))/2)]+[(SQRT(3)-m)/2]i=0
Επομένως
(SQRT(3)-m)/2=0 => m=SQRT(3)
n+((1-mSQRT(3))/2) => n=1