Ευχαριστω για την απαντηση..Ας γινω πιο αναλυτικος. Θεωρησα h(x)=.... στο (1,2) δικαιολογησα γιατι f(b)-1>0 , f(g)-1>0 και πηρα τα ορια οπως ειπα και τα εβγαλα ±απειρο δικαιολογώντας οτι για χ-->2- χ-2<0 και αντιστοιχα χ-1>0 για χ->1+
Η h(x) λεω ειναι συνεχης και τα ορια κανουν + απειρο το ενα και -απειρο το αλλο. Αρα Rf=(-απειρο,+απειρο) το 0 ανηκει στο R....τα υπολοιπα τα εγραψα παραπανω. Η παραγωγος σε τι μας ενδιαφερει σ αυτο το σημειο? Η μονη παραληψη που εκανα ηταν να αναφερω που ανηκει το χ0 και να παω με συνεπαγωγη απο h(x0)=0 <=> .....
Συγγνωμη αν γινομαι κουραστικος.
Σωστό είναι, δεν αντιλέγω. Αλλά δεν υπάρχει στο σχολικό βιβλίο τέτοια πρόταση. Στο σχολικό βιβλίο αναφέρονται τα εξής:
1) Αν f συνεχής στο και γνησίως αύξουσα στο [α,β] τότε f([α,β])=[f(α),f(β)]
2) Αν f συνεχής στο και γνησίως φθίνουσα στο [α,β] τότε f([α,β])=[f(β),f(α)]
3) Αν f συνεχής στο [α,β) και γνησίως αύξουσα στο [α,β) τότε f([α,β))=[f(α), lim(x->β-)f(x))
4) Αν f συνεχής στο [α,β) και γνησίως φθίνουσα στο [α,β) τότε f([α,β))=(lim(x->β-)f(x), f(α)]
5) Αν f συνεχής στο (α,β] και γνησίως αύξουσα στο (α,β] τότε f((α,β])=(lim(x->α+)f(x), f(β)]
6) Αν f συνεχής στο (α,β] και γνησίως φθίνουσα στο (α,β] τότε f((α,β])=[f(β),lim(x->α+)f(x))
7) Αν f συνεχής στο (α,β) και γνησίως αύξουσα στο (α,β) τότε f((α,β))=(lim(x->α+)f(x), lim(x->β-)f(x))
8) Αν f συνεχής στο (α,β) και γνησίως φθινουσα στο (α,β) τότε f((α,β))=(lim(x->β-)f(x), lim(x->α+)f(x))
Το σκεπτικό σου είναι σωστό όπως είπα αλλά δεν βασίζεται σε πρόταση του σχολικού βιβλίου. Κάποιος μπορεί να σου κόψει, κάποιος άλλος όχι.