Παράδοξο σε τηλεπαιχνίδι (Μαθηματικά)

stathismel

New member

Ο stathismel αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών και Φοιτητής . Έχει γράψει 21 μηνύματα.
Κατά το τελικό στάδιο ενός τηλεπαιχνιδιού, ο παίκτης καλείται να επιλέξει ανάμεσα σε τρεις κουρτίνες (έστω Α,Β,Γ) έτσι ώστε να κερδίσει το αμάξι που βρίσκεται πίσω από την τυχερή κουρτίνα.
Ο παίκτης μας (στην περίπτωσή μας) αποφασίζει τελικά να διαλέξει την κουρτίνα Α.
Ο τηλεπαρουσιαστής όμως, αντί να δώσει εντολή για άνοιγμα της κουρτίνας Α, θέλοντας να παρατείνει το παιχνίδι (όπως κάνει κάθε φορά για να μην τελειώσει αμέσως η εκπομπή) δίνει εντολή να ανοίξουν μια διαφορετική κουρτίνα από αυτή που διάλεξε ο παίκτης και μάλιστα για να μην τελειώσει το παιχνίδι όπως είπαμε, διαλέγει αυτή στην οποία ξέρει από πριν ότι δε βρίσκεται το αμάξι. Ας πούμε ότι στην περίπτωσή μας ανοίγει την κουρτινα Β.
Έτσι, όπως κάθε φορά, ο παρουσιαστής ρωτάει τον παίκτη "είσαι σίγουρος ότι θέλεις την κουρτίνα που επέλεξες αρχικά ή μήπως τώρα θέλεις να αλλάξεις κουρτίνα;"

Το ερώτημα, είναι τί θα κάνατε εσείς στη θέση του παίκτη...Α ή Γ;;;

Υ.Γ.:Το παράδοξο αυτό ίσως είναι γνωστό σε αρκετούς...οπότε ας απαντήσουν μόνο όσοι έρχονται για 1η φορά σε επαφή με το πρόβλημα ή όσοι τέλος πάντων δε γνωρίζουν τη λύση από πριν.
 

markus kafu

New member

Ο Μάρκος αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 27 ετών , Μαθητής Γ' λυκείου και μας γράφει απο Αμπελόκηποι (Αττική). Έχει γράψει 4 μηνύματα.
Οι πιθανότητες είναι 50-50.Για όλους.Εγώ θα παρέμενα στην επιλογή μου και δεν θα το άλλαζα.
 

coheNakatos

New member

Ο Βαγγελης αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Μαθητής Γ' λυκείου και μας γράφει απο Βύρωνας (Αττική). Έχει γράψει 662 μηνύματα.
Κοιτα πριν το ανοιγμα της κουρτινας Β ειχαμε 1/3 πιθανοτητες να ειμαστε μεσα ενω μετα εχουμε 1/2 πολυ περισσοτερες πιθανοτητες αρα αφου ειναι 50-50 θα επιμεινω στην δικη μου επιλογη , αυτος ο τροπος διεξαγωγης ειναι ενα απλο επικοινωνιακο τρικ που δεν πρεπει να την πατησουμε :p
 

stathismel

New member

Ο stathismel αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών και Φοιτητής . Έχει γράψει 21 μηνύματα.
Δεν υπάρχει κανένα επικοινωνιακό τρικ. Το πρόβλημα είναι καθαρά μαθηματικό και δε χρειάζεται ιδιαίτερες γνώσεις...απλά καλή χρήση της κοινής λογικής.

Για τη λύση του, χρησιμοποιείστε όλες τις πληροφορίες που δίνονται.
Υπάρχει μαθηματική απάντηση στο πρόβλημα ώστε να επιλέξουμε συγκεκριμένη κουρτίνα, έτσι ώστε να έχουμε τις περισσότερες πιθανότητες να κερδίσουμε.

Προσπαθήστε το...αξίζει τον κόπο!
 

Inferno29278

New member

Ο Inferno29278 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 28 ετών και Φοιτητής . Έχει γράψει 163 μηνύματα.
Νομίζω ότι η μια κουρτίνα έχει 33% πιθανότητα να είναι η σωστή, ενώ η άλλη 66% Ποιά έχει ποιο ποσοστό και γιατί, δεν το θυμάμαι. Ας το πει κάποιος άλλος...
 

Daskalenko7

New member

Ο Δημήτρης αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 26 ετών , Μαθητής Α' λυκείου και μας γράφει απο Αγία Παρασκευή (Αττική). Έχει γράψει 590 μηνύματα.
Η μία έχει 33 τα εκατό και η άλλη 50 ;
 

stathismel

New member

Ο stathismel αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών και Φοιτητής . Έχει γράψει 21 μηνύματα.

mostel

New member

Ο Στέλιος αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών , Φοιτητής και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 1,128 μηνύματα.
Είναι το γνωστό Monty Hall.. Check it here, virtually :)

https://math.ucsd.edu/~crypto/Monty/monty.html


Η απόδειξη είναι καθαρά πιθανοτική και χρησιμοποιεί θεωρήματα που ΔΕΝ διδάσκονται στο λύκειο, όπως π.χ. το θεώρημα του Bayes.

Για περισσότερες πληροφορίες για το παράδοξο, μπορείτε να δείτε εδώ:

https://en.wikipedia.org/wiki/Monty_Hall_problem


Φιλικά,

Στέλιος
 

stathismel

New member

Ο stathismel αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 30 ετών και Φοιτητής . Έχει γράψει 21 μηνύματα.
πρεπει να παρουμε πιθανοτητες;
Τί εννοείς ακριβώς; Αν ρωτάς εάν χρειάζεται να πάρεις τύπους θα σου έλεγα καλύτερα όχι...πραγματικά δε χρειάζεται...μπορείς να το σκεφτείς με το μυαλό σου.

Απλά πρέπει να λάβεις υπ'όψιν σου όλες τις παραμέτρους που σου δίνονται και να μην αγνοείς καμία.
-----------------------------------------
Είναι το γνωστό Monty Hall.. Check it here, virtually :)

https://math.ucsd.edu/~crypto/Monty/monty.html


Η απόδειξη είναι καθαρά πιθανοτική και χρησιμοποιεί θεωρήματα που ΔΕΝ διδάσκονται στο λύκειο, όπως π.χ. το θεώρημα του Bayes.

Για περισσότερες πληροφορίες για το παράδοξο, μπορείτε να δείτε εδώ:

https://en.wikipedia.org/wiki/Monty_Hall_problem


Φιλικά,

Στέλιος
Ευχαριστούμε για τις πληροφορίες φίλε mostel, αλλά θα προτιμούσα να μην έδινες το link που περιλαμβάνει και την εξήγηση...ελπίζω όσοι ασχολήθηκαν και όσοι ασχοληθούν με το πρόβλημα να μην παραδωθούν εύκολα και κοιτάξουν αμέσως τη λύση.
Α, και δε χρειάζεται κανένας τύπος ή θεωρία για την επίλυση του προβλήματος...τώρα εάν υπάρχουν έτοιμες θεωρίες που να μπορούν να εφαρμοστούν δεν το γνωρίζω αλλά γνωρίζω σίγουρα ότι δεν είναι απαραίτητες σε αυτό το πρόβλημα.
 

paganini666

New member

Ο Ίωνας αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 28 ετών και Απόφοιτος . Έχει γράψει 453 μηνύματα.
Είναι το γνωστό Monty Hall.. Check it here, virtually :)

https://math.ucsd.edu/~crypto/Monty/monty.html


Η απόδειξη είναι καθαρά πιθανοτική και χρησιμοποιεί θεωρήματα που ΔΕΝ διδάσκονται στο λύκειο, όπως π.χ. το θεώρημα του Bayes.

Για περισσότερες πληροφορίες για το παράδοξο, μπορείτε να δείτε εδώ:

https://en.wikipedia.org/wiki/Monty_Hall_problem


Φιλικά,

Στέλιος
Θα σε παρακαλουσα να σβησεις τα λινκ σου. Χαλας ολο το νοημα. Αλλωστε ο καθένας μπορει να κανει ενα google search και να τα βρει αυτα.
Φιλικα,
 

statistikos

New member

Ο statistikos αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 37 ετών , Πτυχιούχος και μας γράφει απο Αθήνα (Αττική). Έχει γράψει 672 μηνύματα.
Λόγω αντικειμένου και επειδή δεν τα χάνω με τίποτα αυτά σας παραπέμπω στην ταινία 21.
 

paganini666

New member

Ο Ίωνας αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 28 ετών και Απόφοιτος . Έχει γράψει 453 μηνύματα.
Τι διαφορα εχει το συγκεκριμενο προβλημα στο σκελος που εχουν μεινει 2 επιλογες με το εξης: Υπαρχουν μονο δυο πορτες και πρεπει να επιλέξεις μια απτις δυο.
Αυτό δεν μπορω να καταλαβω.
Γιατι στην δευτερη περιπτωση προφανως ο δειγματικος χωρος ειναι και αφου επιλέγουμε τυχαια τότε τα ενδεχομενα ειναι ισοπίθανα επομενως συμφωνα με τον κλασικό ορισμό της πιθανοτητας η πιθανοτητα ειναι 50% για το καθένα.
 

statistikos

New member

Ο statistikos αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 37 ετών , Πτυχιούχος και μας γράφει απο Αθήνα (Αττική). Έχει γράψει 672 μηνύματα.
Τι διαφορα εχει το συγκεκριμενο προβλημα στο σκελος που εχουν μεινει 2 επιλογες με το εξης: Υπαρχουν μονο δυο πορτες και πρεπει να επιλέξεις μια απτις δυο.
Αυτό δεν μπορω να καταλαβω.
Γιατι στην δευτερη περιπτωση προφανως ο δειγματικος χωρος ειναι και αφου επιλέγουμε τυχαια τότε τα ενδεχομενα ειναι ισοπίθανα επομενως συμφωνα με τον κλασικό ορισμό της πιθανοτητας η πιθανοτητα ειναι 50% για το καθένα.
Είναι δεσμευμένη η πιθανότητα. Θα το κάνεις στο πανεπιστήμιο, μην ανησυχείς.
 

paganini666

New member

Ο Ίωνας αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 28 ετών και Απόφοιτος . Έχει γράψει 453 μηνύματα.

statistikos

New member

Ο statistikos αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 37 ετών , Πτυχιούχος και μας γράφει απο Αθήνα (Αττική). Έχει γράψει 672 μηνύματα.

amalfi

New member

Ο amalfi αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 36 ετών και Καθηγητής . Έχει γράψει 458 μηνύματα.
υπαρχει και πολυ στοιχειωδης λυση (δεν ξερω αν την ειπατε)

αν η τακτικη ειναι ν' αλλαξει γνωμη τοτε αρκει να "πετυχει" με την πρωτη μια λαθος κουρτινα (2/3)

τοτε κερδιζει! (και μονο τοτε)
 

paganini666

New member

Ο Ίωνας αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 28 ετών και Απόφοιτος . Έχει γράψει 453 μηνύματα.

κωστακης

New member

Ο κωστακης αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 28 ετών και Φοιτητής . Έχει γράψει 598 μηνύματα.
εγω που δεν ξερω αγγλικα καλα μπορειτε να μου το εξηγησετε
 

statistikos

New member

Ο statistikos αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 37 ετών , Πτυχιούχος και μας γράφει απο Αθήνα (Αττική). Έχει γράψει 672 μηνύματα.

Χρήστες Βρείτε παρόμοια

  • Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:
    Tα παρακάτω 0 μέλη διάβασαν αυτό το θέμα τις τελευταίες 60 μέρες:
  • Φορτώνει...
Top