Δινεται η εξισωση ε:{χ}^{4}+α{χ}^{3}+3β{χ}^{2}+γχ+δ=0
που εχει 4 ριζες πραγματικεσ και ανισες τις ρ1,ρ2,ρ3,ρ4 και (α,β,γ,δ \in R)
α)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον χο,ξ \in (ρ1,ρ4),οπου χο η ριζα τησ τριτης παραγωγου της εξισωσης (ε),ετσι ωστε η συναρτηση φ(ξ)=\frac{1}{2} -\sqrt{2} χο να εχει πραγματικη λυση
β)Ν.Δ.Ο. το σημειο Μ(χο,ξ) ειναι μοναδικο, και να βρεθει η αποσταση του απο την αρχη των αξονων ,αν επιπλεον δινεται οτι το Μ\in στην y=x
γ)Ν.Δ.Ο. υπαρχει ενα τουλαχιστον ω \in R ετσι ωστε η συναρτηση f(x)=-{α}^{2}{χ}^{6}+{α}^{2}{χ}^{3}-8βχ+16χο να εχει πραγματικη λυση ,αν επιπλεον δινεται οτι β<0
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.