Βρήκα λίγο χρόνο να ασχοληθώ και με τούτη . Βαθμολόγησε μαλακά

.
Ας υποθέσουμε οτι υπάρχει τέτοια f η οποία είναι 1-1 και επίσης ικανοποιεί την :
f(x²) - f²(x) >= 1/4
Έστω τώρα τυχαία x1,x2 E R* για τα οποία θα ισχύει :
f(x1²) - f²(x1) >= 1/4 (1)
f(x2²) - f²(x2) >= 1/4 (2)
Προσθέτοντας κατα μέλη τις (1) & (2) :
f(x1²) +f(x2²) - [f²(x1)+f²(x2)] >= 1/2 =>
Όμως :
f(x²)>= f(x²) - f²(x) >= 1/4
Δηλαδή f(x²) >= 1/4 για κάθε x Ε R*
Άρα ισχύει f(x1²)+f(x2²) >= 1/2 ,και για να ικανοποιείται η παραπάνω ανίσωση αρκεί :
f²(x1)+f²(x2) <= 0
f²(x1)+f²(x2) = 0 => [f²(x1) = 0] ^ [f²(x2) =0] .
Δηλαδή πρέπει f(x1)=f(x2)=0 . Άρα η f δεν είναι 1-1 .