Συλλογή ασκήσεων και τεστ στα Μαθηματικά Προσανατολισμού

To 4β είναι σωστό; Με ένα πρόχειρο σχήμα φαίνεται ότι το σημείο για το οποίο η εφαπτομένη της κόβει τον y'y στο (0,-16) έχει τετμημένη μεγαλύτερη του 1.

Εχεις δίκαιο.
Δικο μου το λαθος.
Το διαστημα ειναι (1,2) κι οχι (0,1)

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Καλησπέρα μιας και είμαι καινούριος εδω μέσα. :)
Έχετε καθόλου έξυπνες ασκήσεις στους γεωμετρικούς τόπους - κύκλο ;
Θα περιμένω.. :)

Σημείωση: Το μήνυμα αυτό γράφτηκε 14 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Επειδή έχει ψοφήσει λίγο το thread,ποστάρω μια άσκηση αρκετά καλή η οποία δεν ξέρω αν ξεφεύγει απο την ύλη της γ'.
Να μελετηθεί ως προς την συνέχεια η συνάρτηση όπου το ακέραιο μέρος του x

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Επειδή έχει ψοφήσει λίγο το thread,ποστάρω μια άσκηση αρκετά καλή η οποία δεν ξέρω αν ξεφεύγει απο την ύλη της γ'.
Να μελετηθεί ως προς την συνέχεια η συνάρτηση όπου το ακέραιο μέρος του x

Νομίζω είναι τελείως εκτός λυκείου.

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Επειδή έχει ψοφήσει λίγο το thread,ποστάρω μια άσκηση αρκετά καλή η οποία δεν ξέρω αν ξεφεύγει απο την ύλη της γ'.
Να μελετηθεί ως προς την συνέχεια η συνάρτηση όπου το ακέραιο μέρος του x
Έτσι για την ιστορία, πόσταρε τη λύση...:)

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Νομίζω είναι τελείως εκτός λυκείου.
Πρεπει να ειναι...ακεραιο μερος στο λυκειο εγω παντως δεν ειχα ακουσει!:/:

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Αν τότε έστω ο μοναδικός ακέραιος που είναι τέτοιος ώστε . Τότε για κάθε είναι με . Άρα η f είναι συνεχής για κάθε .
Έστω τώρα . Είναι

επομένως


Άρα η f δεν είναι συνεχής στους ακέραιους. Συμπερασματικά η f είναι συνεχής στο και ασυνεχής στο .

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Τελευταία επεξεργασία:
Σαφως και ειναι στο πνευμα της γ λυκειου (Δεν καταλαβα τιποτα :P )

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Αν τότε έστω ο μοναδικός ακέραιος που είναι τέτοιος ώστε . Τότε για κάθε είναι με . Άρα η f είναι συνεχής για κάθε .
Έστω τώρα . Είναι

επομένως


Άρα η f δεν είναι συνεχής στους ακέραιους. Συμπερασματικά η f είναι συνεχής στο και ασυνεχής στο .
xfloorx.jpg

Ωραίος.Αυτήν την "λυκειακή" λύση είχα και εγώ στο μυαλό μου.Εκτός λυκείου λύνεται εξίσου εύκολα με την χρήση ακολουθιών.:)

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Έστω συνάρτηση για την οποία ισχύει:


α) Να αποδείξετε ότι ο τύπος της είναι (4 μόρια)
β) Να μελετήσετε την f ως προς την κυρτότητα και να αποδείξετε ότι έχει ένα σημείο καμπής. (6 μόρια)
γ) Να αποδείξετε οτι η f είναι γνησίως αύξουσα και να βρείτε το σύνολο τιμών της. (5 μόρια)
δ) Να βρείτε το πλήθος των ριζών της εξίσωσης (3 μόρια)
ε) Να βρείτε το εμβαδόν που περικλίεται από την f και της ευθείες x=1,x=e. (7 μόρια)

Μιας και μπαινουμε στην τελικη ευθεια ας αρχιζουμε να βαζουμε τετοιες ασκησεις που ζητανε συνηθως πανελληνιες!

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Τελευταία επεξεργασία:
Έστω συνάρτηση για την οποία ισχύει:


α) Να αποδείξετε ότι ο τύπος της είναι (4 μόρια)
β) Να μελετήσετε την f ως προς την κυρτότητα και να αποδείξετε ότι έχει ένα σημείο καμπής. (6 μόρια)
γ) Να αποδείξετε οτι η f είναι γνησίως αύξουσα και να βρείτε το σύνολο τιμών της. (5 μόρια)
δ) Να βρείτε το πλήθος των ριζών της εξίσωσης (3 μόρια)
ε) Να βρείτε το εμβαδόν που περικλίεται από την f και της ευθείες x=1,x=e. (7 μόρια)

Μιας και μπαινουμε στην τελικη ευθεια ας αρχιζουμε να βαζουμε τετοιες ασκησεις που ζητανε συνηθως πανελληνιες!

Βαριέμαι απίστευτα να γράφω την λύση :P
Δεν έχει νόημα κιόλας ας προσπαθήσει κάποιος που δίνει πανελλήνιες.

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Να υπολογίσετε το ολοκλήρωμα:

Βρίσκω f, αλλάζω τα όρια ολοκλήρωσης από σε και , βρίσκω αρχικές βγάζω αποτέλεσμα. Κάνω κάτι λάθος????

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Σωστα τα λες.Η αρχικη της lnx ειναι xlnx - x.

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
[f'(x)-f(x)](x^2+1)=2xf(x)

βρειτε τον τυπο της f αν στο (0,f(0)) εχει εφαπτομενη καθετη στην ευθεια ε: y= -x+1

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
[f'(x)-f(x)](x^2+1)=2xf(x)

βρειτε τον τυπο της f αν στο (0,f(0)) εχει εφαπτομενη καθετη στην ευθεια ε: y= -x+1

Η αρχική διαφορική εξίσωση γράφεται ισοδύναμα:

f΄(x)-f(x)=(2x/(x^2+1))f(x) => f΄(x)=((2x/(x^2+1))+1)f(x) => f΄(x)=((x+1)^2/(x^2+1))f(x)

Θεωρούμε την συνάρτηση g(x)=(f(x)e^(-x))/(x^2+1). Εφόσον η f είναι παραγωγίσιμη (στο R) τότε και η g είναι παραγωγίσιμη και αν υπολογίζουμε την παράγωγο προκύπτει αφού αντικαταστήσουμε την παραπάνω εξίσωση τότε προκύπτει g΄(x)=0. Άρα η g είναι σταθερή. Επομένως g(x)=c, όπου c ανήκει R.

g(x)=c => f(x)=c(x^2+1)e^x
Άρα η f έχει παράγωγο f΄(x)=c((x+1)^2)e^x

Από εκφώνηση γνωρίζουμε ότι f΄(0)*(-1)=-1 => f΄(0)=1
Άρα f΄(0)=c => c=1.

Επομένως f(x)=((x+1)^2)e^x

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
f:[α,β]->R παραγωγισιμη α,β ανηκουν στο (0,π/2) f(α)=β f(β)=α και ισχυει ημα/α=ημβ/β

νδο:

α) υπαρχει τουλ ενα ξ (α,β) τ.ωστε

f'(ξ)εφξ + f(ξ)=0

β) υπαρχει τουλ ενα ξ (α,β) τ.ωστε f'(ξ)f'(f(ξ))=1

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
f:[α,β]->R παραγωγισιμη α,β ανηκουν στο (0,π/2) f(α)=β f(β)=α και ισχυει ημα/α=ημβ/β

νδο:

α) υπαρχει τουλ ενα ξ (α,β) τ.ωστε

f'(ξ)εφξ + f(ξ)=0

β) υπαρχει τουλ ενα ξ (α,β) τ.ωστε f'(ξ)f'(f(ξ))=1

α. Αντιπαραγώγιση στη δοσμένη εξίσωση και τελικά Rolle για τη g(x)=f(x)ημχ στο [α,β].
β. Τα ίδια και τελικά Rolle για τη φ(χ)= f(f(x))-x στο [α,β].

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
να βρειτε το εμβαδον χωριου των f(x)= (x^2 + 1) /x , της εφαπτομενης στο (1,f(1) ) και της χ=2

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Έφτιαξα μία άσκηση καλούτσικη,αποκλειστικά για μαθητές.*γέλιο Μότζο-Τζότο/δρακουμέλ/σατανικού χαρακτήρα καρτούν*
Λοιπόν

Nα συγκριθούν οι Κ και Ε !

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
f παραγωγισημη στο [0,1] με και για καθε

Ισχυει:




Ισχυει :

α) νδο

β) νδο ισχυει για καθε


και αλλη μια..

g(x) = f(x) - 1/x νδο 1/x+1 < g(x+1) - g(x) < 1/x για καθε x>0

Σημείωση: Το μήνυμα αυτό γράφτηκε 13 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Επεξεργάστηκε από συντονιστή:

Χρήστες Βρείτε παρόμοια

Back
Top