Γεια σας παιδια, θελω βοηθεια στην παρακατω ασκηση μιας και την παλευω αρκετη ωρα και πιστευω πως οι ιδεες μου εχουν στερεψει, ισως βεβαια ειναι κατι πολυ απλο αλλα μετα απο 6 ωρες δεν μπορω να το δω

:
1)Έστω g:IR*+->IR με g γνησιως φθίνουσα στο IR*+ .
Aν f(x)=xg(x) για καθε xεIR*+ ν.δ.ο.
f(x+ψ)< f(x) + f(ψ), για καθε χ,ψ ε IR*+.
2)Kαι μια ακομη, αν καποιος ειναι προθυμος:
Αν για τη συναρτηση f ισχυει |f(x) - (fψ)| < |x-ψ| για καθε χ,ψ ε IR, νδο η g(x)=f(x)-x ειναι γνησιως φθίνουσα στο IR.
Ευχαριστώ εκ των προτέρων.