Θεωρώ την συνάρτηση f(x)=(αx^2-(β+3)x+2α+β)/(x^2-4x+3)=(αx^2-(β+3)x+2α+β)/[(x-1)(x+3)]
Το πεδίο ορισμού της f είναι το A=(-άπειρο,-3)U(-3,1)U(1,+άπειρο), οπότε έχει νόημα το lim(x->1)f(x). Γνωρίζουμε ότι lim(x->1)f(x)=2
Για κάθε x στο Α ισχύει αx^2-(β+3)x+2α+β=f(x)(x-1)(x+3). Άρα lim(x->1)(αx^2-(β+3)x+2α+β)=lim(x->1)f(x)*lim(x->1)(x-1)(x+3)=2*0=0. Όμως lim(x->1)(αx^2-(β+3)x+2α+β)=α-(β+3)+2α+β=3α-3. Επομένως πρέπει 3α-3=0 => 3α=3 => α=1
Η f γράφεται f(x)=(x^2-(β+3)x+β+2)/[(x-1)(x+3)]=(x^2-(β+2)x-x+β+2)/[(x-1)(x+3)]=[x(x-β-2)-(x-β-2)]/[(x-1)(x+3)]=[(x-β-2)(x-1)]/[(x-1)(x+3)] =>
=> f(x)=(x-β-2)/(x+3) όπου x ανήκει A.
Άρα lim(x->1)f(x)=lim(x->1)[(x-β-2)/(x+3)]=(-β-1)/4=-[(β+1)/4]. Επομένως πρέπει -[(β+1)/4]=2 => β+1=-8 => β=-9
Θεωρώ την συνάρτηση f(x)=x^4+x^2+x-SQRT(x^2+2x+6)
Για να ορίζεται η f πρέπει το τριώνυμο P(x)=x^2+2x+6 να μην είναι αρνητικό. Αυτό ισχύει καθώς
P(x)=x^2+2x+6=x^2+2x+4+2=(x+2)^2+2>=2>0. Άρα το πεδίο ορισμού της f είναι το Α=R.
Η f είναι συνεχής και παραγωγίσιμη στο πεδίο ορισμού της με παράγωγο:
f΄(x)=4x^3+2x+1-[(x+1)/SQRT(x^2+2x+6)], x ανήκει R
Για x=1 προκύπτει f(1)=0 και f΄(1)=19/3. Από τον ορισμό της παραγώγου συνάρτησης σε σημείο έχουμε:
lim(x->1)[(f(x)-f(1))/(x-1)]=f΄(1) => lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x-1)]=19/3
Επομένως
lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x^2-1)]=lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x-1)(x+1)]=
=lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x-1)]*lim(x->1)[1/(x+1)]=(19/3)*(1/2)=19/6
Άρα lim(x->1)[(x^4+x^2+x-SQRT(x^2+2x+6))/(x^2-1)]=19/6