1) z(συζυγής)=Z^3 * |Z|,
|z(συζυγής)|=|Z^3 * |Z||,
|z(συζυγής)|=|Z^3| * ||Z|| (αλλά |z(συζυγής)|=|Ζ|),
|z|=|z|^3 |z|,
|z|^3=1,
|z|=1
2) πολλαπλασιάζεις την σχέση με z:
zz(συζυγής)=z^4|z|,
|z|^2=z^4 |z|,
|z|^2-z^4 |z|=0,
|z| (|z|-z^4)=0, (αλλά |z|#0)
|z|-z^4=0,
|z|=z^4,
1=z^4
3)Εφόσον |z|=1 θα είναι χ^2+y^2=1 (1) και επίσης η σχέση γράφεται z(συζυγής)=z^3.
Θέτω z=x+yi.
Κάνεις πράξεις και καταλήγεις x-yi = x^3 +3x^2yi-3xy^2-y^3i
Θα πρέπει:
x=x^3-3xy^2 (2) και -y=3x^2y-y^3 (3)
Από την (1) έχεις χ^2=1-y^2. Το αντικαθιστάς αυτό στην (3) και βρίσκεις ότι y=-1, 0, 1
Για y=-1 θα είναι x=0,
Για y=0 θα είναι x=1 ή -1,
Για y=1 θα είναι χ=0
Άρα ο μιγαδικός z θα είναι ένας από τους (0, -1), (1, 0), (-1, 0), (0, 1)