Μιλάς για την απόδειξη του πορίσματος ΙΙ λογικά. Τι δεν καταλαβαίνεις ακριβώς; Απλή, μικρή και σχετικά εύκολη είναι.
(Με βάση το σχήμα του βιβλίου): Έστω κύκλος με κέντρο Ο, ακτίνα ρ (Ο,ρ) και μία χορδή του ΑΒ. Φέρουμε κάθετη στην ΑΒ που διέρχεται από το Ο, τέμνει την ΑΒ στο Κ και τον κύκλο στο Μ. Φέρουμε και τις ΟΑ, ΟΒ (ακτίνες). Έτσι, το ΟΚ είναι ύψος του ισοσκελούς τριγώνου ΟΑΒ (ΟΑ=ΟΒ=ρ, ακτίνες). Άρα, το ΟΚ είναι διάμεσος της ΑΒ και διχοτόμος της ΑΟΒ (πόρισμα Ι). Συνεπώς, ΑΚ=ΚΒ (Κ μέσο) και Ο1=Ο2. Γι' αυτό είναι ΑΜ(τόξο)=ΜΒ(τόξο) [εφόσον ίσες επίκεντρες βαίνουν σε ίσα τόξα].
Στο διαγώνισμα σαφώς δε θα γράψεις την από πάνω έκθεση. Απλά ανέλυσα κάπως περισσότερο την απόδειξη για να γίνει καλύτερα κατανοητή. Του βιβλίου είναι άριστη και περιεκτικότατη.
Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.