Βοήθεια/Απορίες στα Μαθηματικά Προσανατολισμού - Ασκήσεις

styt_geia

New member

Ο Κώστας αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Ηράκλειο (Αττική). Έχει γράψει 997 μηνύματα.


Έστω . H ON έχει συντελεστή διεύθυνσης επομένως και η MΓ θα έχει τον ίδιο συντελεστή διεύθυνσης κι επειδή διέρχεται από το Μ, η εξίσωσή της είναι

Επίσης οι συντεταγμένες των Μ,Ν επαληθεύουν τις εξισώσεις της έλλειψης και του κύκλου αντίστοιχα οπότε


Από την (2) λόγω της (3) έχουμε

Aν θέσουμε διαδοχικά χ=0 και y=0 στην (1) παίρνουμε τις συντεταγμένες των Γ,Δ οι οποίες είναι

Υπολογίζουμε τώρα

 

αδαμαντια52071

New member

Η νυσταλέα αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι Μαθητής Γ' λυκείου και μας γράφει απο Πάτρα (Αχαΐα). Έχει γράψει 1,636 μηνύματα.
Παιδια μπηκαμε με το φροντιστηριο ελλειψη και κανουμε καποιες ασκησεις οι οποιες δεν μυ βγαινουν...=/
Δουλευουμε τον Μπαρλα.

Α ασκηση (ασκ. 5 σελ.213)
Να βρειτε την εξισωση της ελλειψης C που εχει κεντρο το σημειο 0 ,εστιες στον yy' και ε=ριζα 3/2 και διερχεται απο το Α(1/3,2 ριζα 2)

Β ασκηση (ασκ.13 σελ 214)
Να βρειτε την εφαπτομενη της ελλειψης 3χ²+8y²=45 που απεχει απ την αρχη των αξονων αποσταση ιση με 3.



Ευχαριστω εκ των προτερων
 

αδαμαντια52071

New member

Η νυσταλέα αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι Μαθητής Γ' λυκείου και μας γράφει απο Πάτρα (Αχαΐα). Έχει γράψει 1,636 μηνύματα.

saktop

New member

Ο saktop αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Νάουσα (Ημαθία). Έχει γράψει 75 μηνύματα.
Παιδια μπηκαμε με το φροντιστηριο ελλειψη και κανουμε καποιες ασκησεις οι οποιες δεν μυ βγαινουν...=/
Δουλευουμε τον Μπαρλα.

Α ασκηση (ασκ. 5 σελ.213)
Να βρειτε την εξισωση της ελλειψης C που εχει κεντρο το σημειο 0 ,εστιες στον yy' και ε=ριζα 3/2 και διερχεται απο το Α(1/3,2 ριζα 2)

Β ασκηση (ασκ.13 σελ 214)
Να βρειτε την εφαπτομενη της ελλειψης 3χ²+8y²=45 που απεχει απ την αρχη των αξονων αποσταση ιση με 3.



Ευχαριστω εκ των προτερων
A) Από την εκκεντρότητα βγάζεις μια σχέση μεταξύ α και β από τον τύπο: β/α=ρίζα(1- ε^2), την αντικαθιστάς στην εξίσωση της έλλειψης, οπότε έχεις τρεις αγνώστους, το χ, το ψ και το α. Όμως το σημείο Α(1/3, 2ρίζα2) επαληθεύει την εξίσωση της έλλειψης. Άρα, τελικά έχεις μόνο έναν άγνωστο, το α. Το βρίσκεις, μετά βρίσκεις και το β από την σχέση που έβγαλες προηγουμένως και είσαι ΟΚ!

Β) Παίρνεις την σχέση 3xx1 + 8yy1 = 45 (τύπος εφαπτόμενης έλλειψης) και μετά χρησιμοποιείς τον τύπο της απόστασης από ευθεία, οπότε βγάζεις μία σχέση με x1, y1. Όμως το σημείο ( x1, y1 ) ανήκει στην έλλειψη C (Από τη θεωρία αυτό είναι το σημείο επαφής εφαπτόμενης-έλλειψης). Οπότε βγάζεις άλλη μία σχέση με τα x1, y1, οπότε έχεις να λύσεις ένα μη γραμμικό σύστημα δύο αγνώστων (προτείνω μέθοδο αντίθετων συντελεστών, σου λύνει τα χέρια!) και τελικά πρέπει να σου βγουν τέσσερις ευθείες.
 

αδαμαντια52071

New member

Η νυσταλέα αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι Μαθητής Γ' λυκείου και μας γράφει απο Πάτρα (Αχαΐα). Έχει γράψει 1,636 μηνύματα.
Εισαι μεγαλος αλλα να σε ρωτησω κατι?
Στην α ασκηση μου λες για ενα τυπο β/α=ριζα (1 -ε²)
Εμεις αυτον τον τυπο δεν τον εχουμε κανει και ..δεν τον εχω δει και στον Μπαρλα καθολου....
 

saktop

New member

Ο saktop αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Πτυχιούχος και μας γράφει απο Νάουσα (Ημαθία). Έχει γράψει 75 μηνύματα.
Εισαι μεγαλος αλλα να σε ρωτησω κατι?
Στην α ασκηση μου λες για ενα τυπο β/α=ριζα (1 -ε²)
Εμεις αυτον τον τυπο δεν τον εχουμε κανει και ..δεν τον εχω δει και στον Μπαρλα καθολου....
Ναι, δίκιο έχεις, στον Μπάρλα δεν αναφέρεται καθόλου αυτός ο τύπος. Μόνο στο σχολικό τον έχει. Αλλά καλό είναι να τον μάθεις, καθώς χρησιμεύει σε αρκετές ασκήσεις.
 

Sansy16

New member

Η Sansy16 αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι 24 ετών και Μαθητής Γ' λυκείου . Έχει γράψει 49 μηνύματα.
Γειας παιδια εχω μια ασκηση που δεν μου βγαινει μηπως μορει κανεις να με βοηθησει :Δινεται οικογενεια εθειν με εξισωση χ+αy+α2 Ν.Δ.Ο. απο καθε σημειο του επιπεδου διερχονται το πολυ δυο ευθειες.

Γειας παιδια εχω μια ασκηση που δεν μου βγαινει μηπως μορει κανεις να με βοηθησει :Δινεται οικογενεια ευθειων με εξισωση χ+αy+α2 Ν.Δ.Ο. απο καθε σημειο του επιπεδου διερχονται το πολυ δυο ευθειες.
:worry:
 
Επεξεργάστηκε από συντονιστή:

C.J.S.

New member

Ο C.J.S. αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής . Έχει γράψει 24 μηνύματα.
Kαλησπερα!Φροντηστηριο μολις μπηκαμε σε μιγαδικους αλλα ελειπα και κατι δεν πρεπει να κανω καλα!!Ενω διαβασα την θεωρια που μας ειπε ο καθηγητης δεν μπορω να κανω τις ασκησεις!!Παρακαλω οποιος μπορει ας βοηθησει οχι τοσο στο αποτελεσμα οσο στον τροπο λυσης!!Ειναι απλες!
1)Αν z=(λ-2)+(2μ-1)i τοτε να βρειτε τους λ,μ εR ωστε Re(z)=3 και lm(z)=5
2)Να βρειτε τον μιγαδικο z για τον οποιο ισχυει: z=2lm(z)+(Re(z)-2)i
3)Να βρειτε x,y εR : α)(x-2y)+(x+2y)i=1-3i β)(x^2+2)+(x^2-x)i=3
 

Χαρουλιτα

Well-known member

Η Χαρουλιτα αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι Καθηγητής . Έχει γράψει 1,734 μηνύματα.
Δεν εχω πολυ χρονο!
Λοιπον στην πρωτη λες οτι αφου Re(z)=3 θα πρεπει λ-2=3 => λ=5 και Im(z)=5 δηλαδη 2μ-1=5 => μ=3
Στην δευτερη: Λες εστω z=x+yi με x,y ανηκουν R
Τοτε το Re(z)=x και Im(z)=y
Αρα με αντικατασταση εχεις z=2y+(x-2)i που ειναι στην μορφη ζ=χ+yi
Στην τριτη στην α. χ-2y=1 και x+2y=-3 και λυνεις το συστημα και στην β. χ^2 +2=3 και x^2 -x =0 και παλι λυνεις το συστημα...

Ελπιζω να σε βοηθησα...
 

C.J.S.

New member

Ο C.J.S. αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Φοιτητής . Έχει γράψει 24 μηνύματα.
Με βοηθησες παρα πολυ!Τελικα ηταν πολυ ευκολες απλα δεν ηξερα τι πρεπει να κανω για να αρχισω!!Ευχαριστω πολυυ!!!
 

vimaproto

New member

Ο vimaproto αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Απόφοιτος και μας γράφει απο Λάρισα (Λάρισα). Έχει γράψει 887 μηνύματα.
Γειας παιδια εχω μια ασκηση που δεν μου βγαινει μηπως μορει κανεις να με βοηθησει :Δινεται οικογενεια εθειν με εξισωση χ+αy+α2 Ν.Δ.Ο. απο καθε σημειο του επιπεδου διερχονται το πολυ δυο ευθειες.


:worry:
Πιστεύω η εξίσωση να είναι χ+αy+α²=0
Ενα σημείο Μ (χ,y) από το οποίο διέρχονται οι παραπάνω ευθείες. Για κάθε α έχω μια ευθεία που διέρχεται από το Μ. Ισχύει:

Λύνοντας το σύστημα των δύο πρώτων βρίσκω χ=α1α2 και y=-α1-α2 και αντικαθιστώντας στην τρίτη βρίσκω α3=α1 ή α3=α2
Αρα δεν υπάρχει τρίτη ευθεία.
 

αδαμαντια52071

New member

Η νυσταλέα αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι Μαθητής Γ' λυκείου και μας γράφει απο Πάτρα (Αχαΐα). Έχει γράψει 1,636 μηνύματα.

Giannis721

New member

Ο Giannis721 αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 24 ετών . Έχει γράψει 78 μηνύματα.
Πρέπει x>0 αφού είναι μέσα σε λογάριθμο και lnx > 0 => lnx>ln1 => x>1 αφού και το lnx βρίσκεται μέσα σε λογάριθμο.
Άρα Df = (1, +00)
 

Sansy16

New member

Η Sansy16 αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι 24 ετών και Μαθητής Γ' λυκείου . Έχει γράψει 49 μηνύματα.
Πιστεύω η εξίσωση να είναι χ+αy+α²=0
Ενα σημείο Μ (χ,y) από το οποίο διέρχονται οι παραπάνω ευθείες. Για κάθε α έχω μια ευθεία που διέρχεται από το Μ. Ισχύει:

Λύνοντας το σύστημα των δύο πρώτων βρίσκω χ=α1α2 και y=-α1-α2 και αντικαθιστώντας στην τρίτη βρίσκω α3=α1 ή α3=α2
Αρα δεν υπάρχει τρίτη ευθεία.
Ευχαριστω για τη βοηθεια ! :)
 

mary-blackrose

New member

Η Μαίρη αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι Μαθητής Γ' λυκείου και μας γράφει απο Νάξος (Κυκλάδες). Έχει γράψει 137 μηνύματα.
παιδια μια βοηθεια στη παρακατω ασκηση:
να βρειτε την εξισωση της της εφαπτομενης ε της παραβολης που απεχει απο την αρχη των αξονων αποσταση ιση με ριζα 3

σκεφτηκα να βρω την εξισωση της εφαπτομενης και μετα να παρω αποσταση της εφαπτομενης απο το Ο(0,0) αρχη των αξονων ιση με ριζα 3 ειναι σωστη η σκεψη μου...???
 

maria....

New member

Η Μαρία αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι Μεταπτυχιακός φοιτητής σε Information security . Έχει γράψει 1,472 μηνύματα.
παιδια μια βοηθεια στη παρακατω ασκηση:
να βρειτε την εξισωση της της εφαπτομενης ε της παραβολης που απεχει απο την αρχη των αξονων αποσταση ιση με ριζα 3

σκεφτηκα να βρω την εξισωση της εφαπτομενης και μετα να παρω αποσταση της εφαπτομενης απο το Ο(0,0) αρχη των αξονων ιση με ριζα 3 ειναι σωστη η σκεψη μου...???
Aρχικά θα βρεις όπως λες την εφαπτομένη της παραβολής:
ε:

Μετά θα βρεις την απόσταση της ευθείας αυτής από το Ο(0,0) που ισούται με ρίζα 3 και ύστερα θα σου προκύψει μια σχέση με το
και το
οπού θα λύσεις ή ως προς τον
ή ως προς τον
και θα βάλεις την σχέση αυτή στην παραβολή ωστέ να βρεις μετά και τους 2 αγνώστους.
 

Δέσποινα_

New member

Η Δέσποινα_ αυτή τη στιγμή δεν είναι συνδεδεμένη. Είναι 24 ετών , Φοιτητής και μας γράφει απο Θεσσαλονίκη (Θεσσαλονίκη). Έχει γράψει 25 μηνύματα.
Δίνεται κύκλος Κ(1,-2) και ρ=2 και η ευθεια (2λ + 1)x - (λ-1)y + 3 = 0.
α)Να δειχτει οτι η ευθεια διερχεται απο σταθερο σημειο.
β)Δείξτε οτι η ευθεια τεμνει τον κυκλο για καθε τιμη του λ.
γ)Για ποιες τιμες του λ η ευθεια οριζει χορδη στον κυκλο με:
i)ελαχιστο μηκος
ii)μεγιστο μηκος
iii)μηκος 2ριζα2

οποιοσ μπορει να με βοηθησειι!!!!!ειναι μαθηματικα κατευθυνσης β λυκειου!

Ασκηση: ε1: x + y = 0, ε2: x - y = 0, ε3: κ(x+y)-5+x-y+1=0
α)Να βρεθει ο γεωμετρικος τοπος των σημειων του επιπεδου των οποιων το αθροισμα των αποστασεων τους απο τις ε1, ε2 ισουται με 3ριζα2
β)Δειξτε οτι η ε3 διερχεται απο σταθερο σημειο.
γ)Αν ΑΒ ειναι η προβολη του γεωμετρικου τοπου του πρωτου ερωτηματος(α) πανω στον xx', να βρειτε τις τιμες του κ για τις οποιες η ε3 τεμνει το ΑΒ.

Ασκηση: Δίνεται ο κυκλος (x-2)^2 + (y-1)^2 = 16 και η εξισωση (λ+1)x + (1-λ)y -2λ = 0
α)Δειξτε οτι η εξισωση παριστανει ευθεια που διερχεται απο σταθερο σημειο Ρ.
β)Δειξτε οτι η ευθεια τεμνει τον κυκλο σε δυο διαφορετικα σημεια Α, Β για καθε τιμη του λ.
γ)Να υπολογισετε το ΡΑ*ΡΒ (το γινομενο των ευθυγραμμων τμηματων δηλαδη).
 
Επεξεργάστηκε από συντονιστή:

styt_geia

New member

Ο Κώστας αυτή τη στιγμή δεν είναι συνδεδεμένος. Μας γράφει απο Ηράκλειο (Αττική). Έχει γράψει 997 μηνύματα.
Για την πρώτη άσκηση 51 ολόιδια, για την δεύτερη άσκηση 45 ολόιδια, για την τρίτη εδώ λίγο αλλαγμένη αλλά βλέπεις τον τρόπο δουλειάς.
 

Χρήστες Βρείτε παρόμοια

  • Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:
    Tα παρακάτω 2 μέλη διάβασαν αυτό το θέμα τις τελευταίες 60 μέρες:
  • Φορτώνει...
Top