Μάρκος Βασίλης
Πολύ δραστήριο μέλος


πως αποδεικνυεται αυτο απο περιεργια
Αν σου πω ότι είναι μια χαζομάρα που μου είχε πάρει κάτι ώρες στο 1ο έτος να το βρω. Θεωρείς τις συναρτήσεις max(f(x),0) και min(f(x),0) και τις προσθέτεις. Αυτό μόνο... :Ρ
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


λες max(f(x),0) και ταυτοχρονα min(f(x),0).πως γινεται αυτο?Αν σου πω ότι είναι μια χαζομάρα που μου είχε πάρει κάτι ώρες στο 1ο έτος να το βρω. Θεωρείς τις συναρτήσεις max(f(x),0) και min(f(x),0) και τις προσθέτεις. Αυτό μόνο... :Ρ
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μάρκος Βασίλης
Πολύ δραστήριο μέλος


λες max(f(x),0) και ταυτοχρονα min(f(x),0).πως γινεται αυτο?
Θεωρείς δύο νέες συναρτήσεις. Την g(x)=max(f(x),0) και την h(x)=min(f(x),0) και αν τις αθροίσεις βγάζεις την f.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


αααα εσυ ηθελες να βγαλεις οτι η f ειναι το αθροισμα 2 συναρτησεων.ειπα και εγω.εγω νομιζα οτι ελεγες μια αλλη συναρτηση ως αθροισμα των αλλων δυο.πραγματικα τοσο προφανες και αν το βαζες ερωτημα δεν θα το βρισκε ανθρωποςΘεωρείς δύο νέες συναρτήσεις. Την g(x)=max(f(x),0) και την h(x)=min(f(x),0) και αν τις αθροίσεις βγάζεις την f.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Papachrist
Νεοφερμένο μέλος



Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μάρκος Βασίλης
Πολύ δραστήριο μέλος


- Για το 3α) απλά γράφεις τους ορισμούς συνέχειας και πραγωγισιμότητας και λύνεις το σύστημα που προκύπτει.
- Για το 3β) η f ικανοποιεί τις υποθέσεις του ΘΜΤ στο [0,3].
- Για το 3γ) απλώς παραγωγίζεις με προσοχή.
- Για το 3δ) χρησιμοποιείς τα παραπάνω αλλά, αν θες να είσαι εντός της ύλης του κορωνοϊού, επικαλείσαι την άλγεβρα της Α' λυκείου που εξηγείται σαφώς πώς σχεδιάζουμε παραβολές - η f είναι κατά τμήματα παραβολή.
- Άμεσο από τα παραπάνω. Για την αντίστροφη εργάζεσαι κατά τα γνωστά.
- Για το 4α) ο καθορισμός της h είναι εύκολος. Για το ολικό ελάχιστο, θέλει προσοχή η παράγωγος καθώς, πέρα από Θ. Bolzano θα σου χρειαστεί και το πρόσημό της.
- Για το 4β) απλά γράφεις όλα τα δεδομένα και βγαίνει, είναι τυπική άσκηση ρυθμού μεταβολής - παραγωγίζεις τη σχέση που ικανοποιούν οι συντεταγμένες κ.λπ.
- Για το 4γ) θεώρησε τη συνάρτηση:
και μελέτησέ τη ως προς τη μονοτονία. - Κλασσικό όριο, κάνε αντικατάσταση τον τύπο της f και κάνε τις σωστές παραγοντοποιήσεις σε αριθμητή και παρονομαστή.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


παπαχρηστο ξερεις να λυνεις ανισωσεις της μορφης χ<χ^2?
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Papachrist
Νεοφερμένο μέλος


Nαιγια να βρεις την f-g θες και το πεδιο ορισμου της που ειναι η τομη των 2 πεδιων ορισμου f και g.Eλπιζω να το ξερεις
Αυτόματη ένωση συνεχόμενων μηνυμάτων:
παπαχρηστο ξερεις να λυνεις ανισωσεις της μορφης χ<χ^2?
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μάρκος Βασίλης
Πολύ δραστήριο μέλος


To τελευταιο οριο βγαινει αν διαιρεσεις αριθμητη και παρονομαστη με το 5^χ δημιουργονται εκθετικες συναρτησεις που η βαση τους ειναι <1 αρα το οριο στο +00 ειναι 0 και ο παρονομαστης εχει οριο -1.αρα 0/-1=0 το οριο.Στην αρχη βεβαια παρατηρουμε οτι εχουμε απροσδιοριστιες στον αριθμητη και παρονομαστη +00-(+00).Προσοχη δεν μπορουμε να εφαρμοσουμε τον κανονα de l hospital!
Τυπικά, μπορείς να κάνεις de l'Hospital αλλά θέλει προσοχή η αιτιολόγηση. Επίσης, δε βγάζει κάπου ο de l'Hospital. Ωστόσο, οι υποθέσεις του θεωρήματος ικανοποιούνται.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


το οριο του αριθμητη ειναι +00-(+00) το ιδιο και του παρονομαστη δηλαδη δεν ξερεις καν αν υπαρχουν τα ορια του αριθμητη και του παρονομαστη αρα πως θα κανεις de l hospital??εκτος και πεις βγαζω κοινο παραγοντα το e^x οποτε μεσα το οριο της παρενθεσης ειναι 1 και με το οριο του e^x ειναι +00 συνολικα το οριο του αριθμητη οποτε οντως αν το μαζεψεις ετσι μπορεις να κανεις de l hospital αλλα ειναι μεγιστη βλακεια γτ δεν σε παει πουθενα οπως σωστα ειπεςΤυπικά, μπορείς να κάνεις de l'Hospital αλλά θέλει προσοχή η αιτιολόγηση. Επίσης, δε βγάζει κάπου ο de l'Hospital. Ωστόσο, οι υποθέσεις του θεωρήματος ικανοποιούνται.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Unseen skygge
Πολύ δραστήριο μέλος


Με μια ματιά θυμάμαι ότι τετοιο ερώτημα παίζει ο;τα πολύ σε βοηθήματα σαν μεθοδολογίαΘυμαστε εκεινο το καταπληκτικο θεμα του 2008 με το limφ(χ+η)-2φ(χ)-φ(χ-η)/h^2 οταν h τεινει στο μηδεν.Iσως απο τα πιο ωραια θεματα πανελληνιων ever.Οταν ειχε πεσει τοτε γελουσα με τα παπαγαλακια που δεν ξερανε τι να κανουνε και εγω τους γλεντουσα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


παιζει απο ποτε ομως??το 2008 δεν υπηρχε σε κανενα μα κανενα βοηθημα!!για το timing τοτε δεν το ελυσε σχεδον κανεις!!Με μια ματιά θυμάμαι ότι τετοιο ερώτημα παίζει ο;τα πολύ σε βοηθήματα σαν μεθοδολογία
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Unseen skygge
Πολύ δραστήριο μέλος


Αυτό δεν το γνωρίζω μιας και έδωσα το 2018! Πολύ πιθανό αυτό που λες. Ωστόσο πλέον ένας μαθητής καλά προετοιμασμένος που έχει κατανοήσει όλες τις ασκήσεις ενός βοηθήματος δεν υπάρχει περίπτωση να βρει κάποιο ερώτημα που θα τον αιφνιδιάσει στην τελική εξέτασηπαιζει απο ποτε ομως??το 2008 δεν υπηρχε σε κανενα μα κανενα βοηθημα!!για το timing τοτε δεν το ελυσε σχεδον κανεις!!
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
eukleidhs1821
Διάσημο μέλος


σωστο αυτο που λες.σκεψου φιλε μου τοτε επεσε και ακομα ενα ψαρωτικο ερωτημα.συνηθως στις εξετασεις δεν σου βαζουν πληθος ριζων f(x)=σταθερας??Ε τοτε επεσε f(x)=a και να παρεις περιπτωσεις για το a που μπλεκονταν τα συνολα τιμων!!Νομιζω δεν εχει ξαναπεσει ποτε απο τοτε το α να μην ειναι σταθερο!!Τοτε λοιπον εμεις δεν λυναμε τετοιες ασκησεις και αιφνιδιαστηκαμε σε αντιθεση με τωρα που αν πεσει κατι τετοιο θα υπαρχει στανταρ μεθοδολογια!!Επισης τοτε επεσε και το πονηροτατο ερωτημα με ολοκληρωμα!!Ενα ερωτημα με συγκεκριμενη τεχνικη που ειχε πεσει πριν το 2008 σε ακομα παλαιοτερες εξετασεις πριν καν το 2000.Μετα απο αυτο στανταρ βαλανε μεθοδολογια πολλα βοηθητικα χωρις να εχω δει καποιο βοηθητικο απο τοτε για να ξερωΑυτό δεν το γνωρίζω μιας και έδωσα το 2018! Πολύ πιθανό αυτό που λες. Ωστόσο πλέον ένας μαθητής καλά προετοιμασμένος που έχει κατανοήσει όλες τις ασκήσεις ενός βοηθήματος δεν υπάρχει περίπτωση να βρει κάποιο ερώτημα που θα τον αιφνιδιάσει στην τελική εξέταση
Γενικως τωρα τα θεματα ακολουθουν μια συγκεκριμενη ρουτινα και δινεται μεγαλυτερη βαρυτητα απο οτι εχω καταλαβει στην κατανοηση καποιων εννοιων και οχι στην αναζητηση καποιου παμπονηρου θεματος με λεπτο χειρισμο.Βεβαια διαφωνω οτι δεν σε αιφνιδιαζουν τα θεματα τωρα.Θυμαμαι μια χρονια που τα λυνα για την πλακα μου το 2017 το τελευταιο ερωτημα ηταν αρκετα τσιμπημενο και δεν το λεγες τυποποιημενο
Αυτα τα θεματα παντως που θα σιχαινομουν ως υποψηφιος να μου πεσουν ειναι υπαρξιακα με εφαπτομενη.πολυ θεωρητικα ερωτηματα...
Δίνεται η συνάρτηση f(x)= ln( συνx) ,-π/2<χ<π/2 Β1. Να μελετηθεί ως προς την μονοτονία και τα ακρότατα και να βρείτε το σύνολο τιμών της. Β2 i) Να βρείτε το πλήθος των ριζών της εξίσωσης f(x)=lna^2 για τις διάφορες τιμές του α .i) Στην περίπτωση που η παραπάνω εξίσωση έχει δύο ρίζες χ1,χ2 νδο χ1+χ2=0
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Papachrist
Νεοφερμένο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μάρκος Βασίλης
Πολύ δραστήριο μέλος


- Για το α) απλά θεωρείς τη συνάρτηση h(x)=lnx-3+x και κάνεις Bolzano + μονοτονία (είναι απλό).
- Για το β) παραγώγισε και θα αναχθείς στο προηγούμενο ερώτημα μετά από πράξεις - η παράγωγος έχει το ίδιο πρόσημο/ρίζες με την h(x).
- Για το γ) πάρε το αποτέλεσμα του β) και κάνε Bolzano στα διαστήματα πριν και μετά το x_0.
- Για το δ) παίξε με τις ρίζες και το ολικό ελάχιστο της f - ΘΜΤ κ.λπ.
Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Papachrist
Νεοφερμένο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Μάρκος Βασίλης
Πολύ δραστήριο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 5 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 3 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 230 μέλη διάβασαν αυτό το θέμα:
- giannis06
- Panagiwths12
- mikke
- hristosdab
- trifasikodiavasma
- haji
- thepigod762
- Mariosm.
- soulatso
- oteletampis
- phleidhs
- Hased Babis
- nearos
- AggelikiGr
- sir ImPeCaBlE
- veiNqh
- Scandal
- alekos
- Debugging_Demon
- just some guy
- xristosgkm
- ismember
- Apocalypse
- arrow25
- rempelos42
- ggl
- GStef
- QWERTY23
- xrisamikol
- Σωτηρία
- nikoletaz57
- _Aggelos123
- Mariam38
- SlimShady
- strsismos88
- Georgekk
- Lia 2006
- igeorgeoikonomo
- marian
- tsiobieman
- constansn
- Xristosdimitra
- Panagiotis849
- ρενακι 13
- Memetchi
- eukleidhs1821
- Nikkkpat
- Unboxholics
- korlef
- kwstaseL
- Thanos_D
- the purge
- T C
- Giii
- Papachrist
- liaiscool
- Αννα Τσιτα
- globglogabgalab
- Pharmacist01
- thanahss
- abcdefg12345
- nicole1982
- thecrazycretan
- kvstas92
- KingOfPop
- maria301
- papa2g
- stefan
- Κλημεντίνη
- TonyMontanaEse
- Athens2002
- Alexecon1991
- Μάρκος Βασίλης
- Cortes
- το κοριτσι του μαη
- calliope
- ale
- panagiotis G
- Kleanth
- aggelosst9
- BioChemical
- spring day
- nucomer
- Georgia110
- LeoDel
- pink_panther
- Alexandros973
- marsenis
- den antexw allh apotyxia
- KaterinaL
- kiyoshi
- drosos
- Λαμπρινηη
- Bill22
- Chrysablac.
- giorgosp97
- Βλα
- Monster Hunter
- jul25
- xxxtolis
- Stroka
- nicks1999
- totiloz
- Earendil
- mitsakos
- tasost
- lnesb
- ssalex
- alan09
- Livaja10
- χημεια4λαιφ
- Viedo
- UncleJ
- Kostakis45
- Infrared
- Zgian
- pepatogourounaki
- hirasawayui
- GeoCommand
- Eleni54
- American Economist
- EiriniS20
- ΘανάσοςG4
- stamoul1s
- Αριάνα123
- uni77
- Libertus
- tasoss
- PanosCh002
- Unseen skygge
- Νικόλας Ραπ.
- cel123
- The Limit Does Not Exist
- don_vito
- suaimhneas
- Αλκης Κ.
- alexrami
- Baggelitsa36
- Νομικάριος13
- spinalgr1990
- d_th
- Adolfo valencia
- Πα.Κ
- Vasilis25
- Johnman97
- Steffie88
- rekcoR
- gwgw_5
- fockos
- Mariahj
- roud
- kostas83
- Cpt.Philips
- Makis45
- Χρησλου
- Panos_02
- Vold
- tymvorixos
- GiorgosAsi
- Neos167
- theodoraooo
- George187
- Άρτεμις Α.
- Μαρία2222
- christos87
- Idontknoww
- jimis2001
- Metamorph
- Γατόπαρδος.
- Johnsk
- mitsos14
- johnsiak
- Elel
- Dreamer_SW
- Γιαννης1987Θεσσ
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.