Αυτά που είπε ο Βασίλης ισχύουν.

Ούτε εγώ ξέρω να χρησιμοποιώ latex, γι'αυτό θα προσπαθήσω να το γράψω κατανοητά.

Υπάρχει και το ενδεχόμενο λάθους, ε

το αρχικό όριο θα γίνει lim καθώς το x->-oo του [(λ+1)x^4]/[(1-λ)x^3], το οποίο είναι ίσο με lim καθώς το x->-oo του [(λ+1)x]/(1-λ). Έστω α το συγκεκριμένο όριο.
Περιπτώσεις:
-αν (λ+1)/(1-λ) > 0 τότε λ Ε (-1,1) και α=-οο
-αν (λ+1)/(1-λ) < 0 τότε λ Ε (-οο,-1)U(1,+οο) και α=+οο
(και στα 2 προηγούμενα τα βρίσκεις με πινακάκι)
-αν (λ+1)/(1-λ) = 0, τότε, δεδομένου ότι (1-λ) διάφορο του 0 προκύπτει ότι λ+1=0 άρα λ=-1.
Πας τώρα στο αρχικό όριο, αυτό το μακρυνάρι(


) και βάζεις όπου λ το -1. Θα σου βγει lim καθώς το x->-oo του (x+5)/(2x^3 - x-1) το οποίο είναι ίσο με lim καθώς το x->-oo του x/2x^3 που είναι ίσο με lim καθώς το x->-oo του 1/2x^2 που είναι ίσο με 0, αφού βγαίνει 1/+οο
Voila!