Ανώτερα Μαθηματικά

:lol: Ωραίος ρε μάγκα. Με πέθανες. Τι σε ενδιαφέρουν αυτά όμως ρε Ηλία, αφού ιατρική θες να πας.
just curious! Δε θελω να παω ιατρικη χωρις να το ξερω!:(

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
παιδιά αν έχετε απορίες απευθυνθήτε στον george k214... τα ξέρει αυτά τα έξαλλα... ;-)

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
just curious! Δε θελω να παω ιατρικη χωρις να το ξερω!:(

Είναι αδύνατον να καταλάβεις τι είναι αυτό το σύμβολο με την μπάλα στη μέση (ε ρε γέλια:lol:) αν δεν ξέρεις στοιχειωδώς λογισμό συναρτήσεων πολλών μεταβλητών.

Με λίγα λόγια αυτό το σύμβολο σημαίνει ότι το διάστημα ολοκλήρωσης είναι κλειστό και χρησιμοποιείται στα επικαμπύλια και στα επιφανειακά ολοκληρώματα. Αν μία συνάρτηση (πραγματική ή διανυσματική) 2 ή 3 πραγματικών μεταβλητών είναι ολοκληρώσιμη κατά μήκος της κλειστής καμπύλης C, (δηλαδή τα άκρα της συμπίπτουν) του επιπέδου αν πρόκειται για 2 μεταβλητές και του επιπέδου ή του χώρου αν πρόκειται για 3 μεταβλητές, τότε το επικαμπύλιο ολοκλήρωμα της συνάρτησης αυτής συμβολίζεται με μία "μαγκούρα" (το σύμβολο του ολοκληρώματος) και "μία μπάλα στη μέση". Αν μία συνάρτηση (πραγματική ή διανυσματική) 3 πραγματικών μεταβλητών είναι ολοκληρώσιμη σε μία κλειστή επιφάνεια S του χώρου (π.χ. μία κούφια σφαίρα), τότε το επιφανειακό ολοκλήρωμα της συνάρτησης αυτής συμβολίζεται με δύο "μαγκούρες" και "μία μπάλα (πιο πολύ με έλλειψη μοιάζει παρά με κύκλο γιατί έχουμε 2 μαγκούρες:D) στη μέση".

Αν δεν κατάλαβες τίποτα θα μου φανεί απόλυτα λογικό. Αν κατάλαβες έστω και το παραμικρό θα μου φανεί το πιο παράξενο πράγμα του κόσμου.

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Είναι αδύνατον να καταλάβεις τι είναι αυτό το σύμβολο με την μπάλα στη μέση (ε ρε γέλια:lol:) αν δεν ξέρεις στοιχειωδώς λογισμό συναρτήσεων πολλών μεταβλητών.

Με λίγα λόγια αυτό το σύμβολο σημαίνει ότι το διάστημα ολοκλήρωσης είναι κλειστό και χρησιμοποιείται στα επικαμπύλια και στα επιφανειακά ολοκληρώματα. Αν μία συνάρτηση (πραγματική ή διανυσματική) 2 ή 3 πραγματικών μεταβλητών είναι ολοκληρώσιμη κατά μήκος της κλειστής καμπύλης C, (δηλαδή τα άκρα της συμπίπτουν) του επιπέδου αν πρόκειται για 2 μεταβλητές και του επιπέδου ή του χώρου αν πρόκειται για 3 μεταβλητές, τότε το επικαμπύλιο ολοκλήρωμα της συνάρτησης αυτής συμβολίζεται με μία "μαγκούρα" (το σύμβολο του ολοκληρώματος) και "μία μπάλα στη μέση". Αν μία συνάρτηση (πραγματική ή διανυσματική) 3 πραγματικών μεταβλητών είναι ολοκληρώσιμη σε μία κλειστή επιφάνεια S του χώρου (π.χ. μία κούφια σφαίρα), τότε το επιφανειακό ολοκλήρωμα της συνάρτησης αυτής συμβολίζεται με δύο "μαγκούρες" και "μία μπάλα (πιο πολύ με έλλειψη μοιάζει παρά με κύκλο γιατί έχουμε 2 μαγκούρες:D) στη μέση".

Αν δεν κατάλαβες τίποτα θα μου φανεί απόλυτα λογικό. Αν κατάλαβες έστω και το παραμικρό θα μου φανεί το πιο παράξενο πράγμα του κόσμου.
Ισως να καταλαβα κατι
Ανελυσε αυτα που εχω κανει bold
Με αυτο το "μπαλοκληρωμα" μπορουμε να βρουμε τι;Εμβαδο; Αφου λες για κλειστα σχηματα τοτε και για τον κυκλο;

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
χμ...
Καλη ιδεα αλλα ισως δε θελω να ασχοληθω τοσο σοβαρα. Θελω να αποκτησω μια σφαιρικη γνωση και για αλλα πεδια των μαθηματικων αλλα οχι να γινω και μαθηματικος. επισης θελω να συνεχισω να λυνω ασκησεις για τα πλακα μου και να το συνδυασω αυτο με το να μαθω καινουργια θεωρια.
Λίγο καθυστερημένη απάντηση αλλά δοκίμασε αυτό το Forum: https://www.mathematica.gr/

Το προτείνω σε όλους όσους αγαπάνε τα μαθηματικά!:no1:

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Λίγο καθυστερημένη απάντηση αλλά δοκίμασε αυτό το Forum: https://www.mathematica.gr/

Το προτείνω σε όλους όσους αγαπάνε τα μαθηματικά!:no1:
ειμαι μεσα εδω και καιρο!:P
ο paganini ειμαι.
-----------------------------------------
χμ βρηκα κατι χρησιμο
https://www.physics.upatras.gr/UploadedFiles/course_10_5715.pdf
-----------------------------------------
και αυτο καλο!!!
https://www.mar.aegean.gr/greek/student notes/Λογισμός Πολλών Μεταβλητών/math3-08.pdf

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
ειμαι μεσα εδω και καιρο!:P
ο paganini ειμαι.
το κακό με το mathematica είναι πως τις ασκήσεις και καλά πιο χαμηλού επιπέδου μπαίνουν όλο καθηγητές και τις λύνουν ... Έτσι δεν ασχολούμε και πολύ!
Επίσης αν σου αρέσουν τα μαθηματικά χάζεψε και εδω:
https://www.nsmavrogiannis.gr/
Είναι του μαθηματικού μου που είναι και mod στο mathematica. Όλο και κάτι ενδιαφέρον μπορεί να βρεις...

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
ειμαι μεσα εδω και καιρο!:P
ο paganini ειμαι.
το κακό με το mathematica είναι πως τις ασκήσεις και καλά πιο χαμηλού επιπέδου μπαίνουν όλο καθηγητές και τις λύνουν ... Έτσι δεν ασχολούμε και πολύ!
Επίσης αν σου αρέσουν τα μαθηματικά χάζεψε και εδω:
https://www.nsmavrogiannis.gr/
Είναι του μαθηματικού μου που είναι και mod στο mathematica. Όλο και κάτι ενδιαφέρον μπορεί να βρεις...
το εχω ξεκοκκαλισει και αυτο :lol:

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
καλά πάρτε τον Μιχαηλίδη ολοκληρώματα γ λυκείου και πείτε μου μετά αν ειναι γ

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Είσαι πολύ ψαγμένος φίλε! Σε θαυμάζω!
Κ απ' ότι κατάλαβα τον έχεις ξανακούσει τον Μαυρογιάννη! Μακάρι να μπορούσες να τον δεις να διδάσκει! Είναι απίθανος ο άνθρωπός!

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Είσαι πολύ ψαγμένος φίλε! Σε θαυμάζω!
Κ απ' ότι κατάλαβα τον έχεις ξανακούσει τον Μαυρογιάννη! Μακάρι να μπορούσες να τον δεις να διδάσκει! Είναι απίθανος ο άνθρωπός!
γιατι τον εχεις δει εσυ; :O

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
γιατι τον εχεις δει εσυ; :O
Ναι! Στο σχολείο μου τα τρία τελευταία χρόνια!:P
Μην χαλάμε το θέμα της συζήτησης όμως, και γω συγνώμη που το ψιλοάλλαξα...

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Ναι! Στο σχολείο μου τα τρία τελευταία χρόνια!:P
Μην χαλάμε το θέμα της συζήτησης όμως, και γω συγνώμη που το ψιλοάλλαξα...

για άλλη μια φορά καταδεικνύεται σε βάθος η διαφορά ανάμεσα σε προνομιούχους και μη...που οδεύουμε πατριώτες?????ΑΙΣΧΟΣ σε αυτη τη χώρα κυριαρχεί η αναξιοκρατία και ο νόμος του ισχυρού !!!!!ΝΤΡΟΠΗ!!!!

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Ισως να καταλαβα κατι
Ανελυσε αυτα που εχω κανει bold
Με αυτο το "μπαλοκληρωμα" μπορουμε να βρουμε τι;Εμβαδο; Αφου λες για κλειστα σχηματα τοτε και για τον κυκλο;

Ας πω 2 πραγματάκια για τον λογισμό πραγματικών συναρτήσεων 2 πραγματικών μεταβλητών.

Μία (πραγματική) συνάρτηση 2 (πραγματικών) μεταβλητών f(x,y) συμβολίζεται με .

Τι είναι όμως ο χώρος ; Ας το ορίσουμε. Ως χώρος ορίζεται το σύνολο . Συνεπώς ο χώρος αποτελείται από τα σημεία (x,y) του επιπέδου Oxy όπου x,y πραγματικοί αριθμοί, ενώ ο γνωστός χώρος R αποτελείται από τα σημεία x της ευθείας Ox όπου x πραγματικός αριθμός.

Κάθε επίπεδο χωρίο του (π.χ. κυκλικός δίσκος) είναι υποσύνολο του . Επίσης κάθε επίπεδη καμπύλη του (π.χ. κυκλική περιφέρεια) είναι υποσύνολο του .

Τώρα θα οριστούν οι συντεταγμένες ενός σημείου στον 3διάστατο χώρο. Φανταστείτε 3 άξονες στον χώρο x, y, z που είναι ανά 2 κάθετοι και το σημείο τομής τους είναι το σημείο Ο. Οι άξονες x,y είναι κάθετοι μεταξύ τους και ο άξονας z είναι κάθετος στο επίπεδο των x,y και διέρχεται από το Ο που είναι το σημείο τομής και των 3 αξόνων. Η θετική φορά των αξόνων επιλέγεται αυθαίρετα αλλά συνήθως χρησιμοποιούνται δεξιόστροφα συτήματα. Η θέση ενός σημείου του χώρου καθορίζεται από 3 αριθμούς x,y,z κάθε ένας από τους οποίους δείχνει το προσημασμένο μήκος ευθύγραμμου τμήματος με άκρα την αρχή Ο και πέρας την προβολή του σημείου στον αντίστοιχο άξονα. Έτσι σε ένα σημείο του χώρου αντιστοιχεί μία μοναδική 3άδα (x,y,z) και σε μία 3άδα (x,y,z) αντιστοιχεί ένα μοναδικό σημείο του χώρου. Η x λέγεται τετμημένη, η y τεταγμένη και η z κατηγμένη του σημείου. Τα (x,y,z) αποτελούν τις συντεταγμένες του σημείου.

Ορίζουμε παρόμοια τον χώρο . Δηλαδή ο χώρος αποτελείται από όλα τα σημεία (x,y,z) όπου x,y,z πραγματικοί αριθμοί.

Ως γραφική παράσταση της συνάρτησης 2 μεταβλητών f(x,y) ορίζεται το σύνολο των σημείων (x,y,z) του για τα οποία ισχύει z=f(x,y). Δηλαδή το σύνολο των σημείων (x,y,f(x,y)). Η γραφική παράσταση αυτή αντιστοιχεί σε μία επιφάνεια του χώρου (π.χ. επίπεδο, ημισφαίριο κλπ.)

Το πεδίο ορισμού μίας συνάρτηση 2 μεταβλητών f(x,y) είναι υποσύνολο του , το πεδίο τιμών της υποσύνολο του R και η γραφική της παράσταση υποσύνολο του .

Αν μία συνάρτηση 2 μεταβλητών είναι ολοκληρώσιμη στα σημεία μιας καμπύλης C του (π.χ. κύκλος στο επίπεδο Oxy που είναι κλειστή καμπύλη ή ημικύκλιο που είναι ανοιχτή καμπύλη) τότε το ολοκλήρωμά της f κατά μήκος της C λέγεται επικαμπύλιο ολοκλήρωμα της f κατά μήκος της C. Το ολοκλήρωμα αυτό ορίζεται σε τόξο της καμπύλης C που σχηματίζεται από 2 σημεία A και Β της καμπύλης C. Αν η καμπύλη είναι κλειστή (π.χ. κύκλος) τότε τα Α και Β συμπίπτουν και χρησιμοποιείται αυτή "η μπάλα στη μέση"

Αν η f είναι θετική (z>0) στο τόξο ΑΒ της καμπύλης C τότε το επικαμπύλιο ολοκλήρωμα της σε αυτό το τόξο ισούται με το εμβαδόν της επιφάνειας που προκύπτει από την προβολή του τόξου ΑΒ της C στην γραφική παράσταση της f.

Αυτά σαν εισαγωγή.

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
https://www.mar.aegean.gr/greek/student%20notes/%CE%91%CF%80%CE%B5%CE%B9%CF%81%CE%BF%CF%83%CF%84%CE%B9%CE%BA%CF%8C%CF%82%20%CE%9B%CE%BF%CE%B3%CE%B9%CF%83%CE%BC%CF%8C%CF%82/math1-08.pdf
πώς να αποδειξουμε τις ιδιοτητες στη σελιδα 8;
Και εκει που λεει για τον Cantor τι εννοει επι αντιστοιχια μεταξυ τους;
Αυτα τα συνολα εχουν τον ιδιο αριθμο στοιχειων; Προφανως και τα δυο ειναι απειρα αλλα οι φυσικοι ειναι διπλασιοι απτους αρτιους :S

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Και εκει που λεει για τον Cantor τι εννοει επι αντιστοιχια μεταξυ τους; Αυτα τα συνολα εχουν τον ιδιο αριθμο στοιχειων; Προφανως και τα δυο ειναι απειρα αλλα οι φυσικοι ειναι διπλασιοι απτους αρτιους

Όταν 2 σύνολα Α και Β περιέχουν στοιχεία πεπερασμένου πλήθους ίσα σε αριθμό και για τα 2 σύνολα, τότε είναι ισοδύναμα. Αν τα σύνολα Α και Β περιέχουν άπειρα σε πλήθος στοιχεία, αλλά είναι διακεκριμένα και μεμονομένα μεταξύ τους τότε θα πρέπει σε ένα στοιχείο του Α να αντιστοιχεί ένα στοιχείο του Β και αντίστροφα. Για παράδειγμα τα σύνολα Ν και Ζ περιέχουν άπειρο αριθμό στοιχείων και είναι ισοδύναμα. Τα σύνολα των άρτιων και περιττών ακεραίων είναι ισοδύναμα.

Οι φυσικοί μπορεί να είναι διπλάσιοι από τους άρτιους αλλά επειδή σε κάθε φυσικό Ν αντιστοιχεί ένας άρτιος φυσικός και αντίστροφα και επειδή τα στοιχεία και των δύο συνόλων είναι άπειρα σε αριθμό αλλά διακεκριμένα (δηλαδή τα σύνολα είναι αριθμήσιμα, σε σύνολα αριθμών αυτό σημαίνει ότι δεν σχηματίζουν διάστημα) τότε είναι ισοδύναμα.

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Για παράδειγμα τα σύνολα Ν και Ζ περιέχουν άπειρο αριθμό στοιχείων αλλά δεν είναι ισοδύναμα. Τα σύνολα των άρτιων και περιττών ακεραίων είναι ισοδύναμα.

(Z ειναι οι ρητοι? (γιατι τα μπερδευω) )

οι ρητοι μπορουν να αντιστοιχιστουν ενας με εναν με τους φυσικους

οι πραγματικοι ομως ειναι πραγματι περισσοτεροι (εχει πολλη πλακα η κλασικη αποδειξη. προσπαθηστε το οσοι δεν το εχετε δει!!)

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
(Z ειναι οι ρητοι? (γιατι τα μπερδευω) )

Ζ είναι οι ακέραιοι και Q οι ρητοί.

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
τοτε αν μιλαμε για 1-1 αντιστοιχια, μια χαρα γινεται και μεταξυ ακεραιων - φυσικων



(μηπως μιλαμε για κατι αλλο και δεν καταλαβα?)

1 1
2 -1
3 2
4 -2

κλπ (?)

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Γίνεται. Τα σύνολα Ν και Z είναι ισοδύναμα.

Σημείωση: Το μήνυμα αυτό γράφτηκε 16 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 

Χρήστες Βρείτε παρόμοια

  • Τα παρακάτω 0 μέλη και 0 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:
    Tα παρακάτω 9 μέλη διάβασαν αυτό το θέμα:
  • Φορτώνει...
Back
Top