@eukleidhs1821 Την ίδια ιδέα έχετε, απλά εσύ υποθέτεις ότι η διαδρομή είναι, ουσιαστικά, τεθλασμένη γραμμή, ενώ μπορεί να μην είναι.
Αρχικά, να τοποθετήσουμε καλά το πρόβλημα. Αν θεωρήσουμε δύο σημεία A,B σε ένα καρτεσιανό επίπεδο με άξονες που (modulo στροφή και μεταφορά) είναι τέτοιοι ώστε A=(0,0) και B=(b,0) τότε αναζητούμε τη συνεχή και παραγωγίσιμη συνάρτηση f που ελαχιστοποιεί την παράσταση:
Η λύση είναι τετριμμένη.
Πάντως, το πρόβλημα μπορεί να γραφτεί και λίγο γενικότερα:
Αν θεωρήσουμε δύο σημεία A,B σε ένα καρτεσιανό επίπεδο με άξονες που (modulo στροφή και μεταφορά) είναι τέτοιοι ώστε A=(0,0) και B=(b,0) τότε αναζητούμε τη συνεχή συνάρτηση f που ελαχιστοποιεί την παράσταση:
όπου
είναι μία διαμέριση του [0,b] - η παραπάνω παράσταση λέγεται
κύμανση της f στο [0,b]. Και πάλι, είναι εύκολο να δείξεις ότι η συνάρτηση που θες είναι η σταθερή f=0. Τώρα, μπορείς να το πας ένα κλικ παραπάνω και να αφαιρέσεις την υπόθεση της συνέχειας - στη θέση της πρέπει να υποθέσουμε ότι η συνάρτηση είναι φραγμένης κύμανσης, για να έχει νόημα το πρόβλημα - οπότε θα βρεις ότι όσες συναρτήσεις μας κάνουν τη δουλειά είναι η f=0 και αυτές που είναι σχεδόν παντού ίσες με αυτήν (ως προς το μέτρο Lebesgue).
Το πρόβλημα της εύρεσης της «ελάχιστης διαδρομής» μεταξύ δύο σημείων σε μία «επιφάνεια» - ριμάννεια πολλαπλότητα - και όχι απλά στο επίπεδο έχει άμεσα να κάνει με αυτό που λέμε
γεωδαισιακή.