α) |z-1|=6 => |z-(1+0i)|=6 αρα ο γ.τ του z ειναι κυκλος με κεντρο Κ(1,0) και ακτινα 6 . Οταν σου ζητα την μεγιστη και την ελαχιστη τιμη του |z| σημαινει οτι πρεπει να βρεις την μεγιστη και την ελαχιστη αποσταση που μπορει να εχει μια εικονα του z απο το σημειο Ο(0,0) . Κανε τον κυκλο σε ενα καρτετσιανο επιπεδο συντεταγμενων χ,y και θα δεις ποια ειναι η μεγιστη τιμη του |z | και ποια η ελαχιστη.
min|z|= ρ-1=6-1=5
max|z|=ρ+1=6+1=7
β) Λυσε την δευτερη σχεση ως προς w και θα βγει w=6(z-1)/3z+1= 2(z-1)/(z+1/3) [δεν υπαρχει προβλημα με τον παρανομαστη αφου z διαφορο του -1/3 (σου λεει οτι |z+1/3|=12) ]
αρα |w|= 2|(z-1)/(z+1/3)|=...=2*6/12=1 , οποτε |w|=1
Το τριτο θα το δω αργοτερα