Απορία σε άσκηση - Πρόβλημα ταλάντωσης με απόσβεση

χημεια4λαιφ

Νεοφερμένο μέλος

Ο χημεια4λαιφ αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι Μεταπτυχιακός φοιτητής. Έχει γράψει 96 μηνύματα.
939515c7ffda0b13e9.jpg




Μήπως μπορεί κάποιος να με βοηθήσει; τις εξισώσεις τις ξέρω..... Έχω κολλήσει στο δεύτερο ερώτημα.

Σημείωση: Το μήνυμα αυτό γράφτηκε 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
939515c7ffda0b13e9.jpg





Μήπως μπορεί κάποιος να με βοηθήσει; τις εξισώσεις τις ξέρω..... Έχω κολλήσει στο δεύτερο ερώτημα.


Δεδομενου οτι τα εχεις βρει ολα,στο 2ο ερωτημα το μονο που εχεις να κανεις ειναι να εξισωσεις τον ορο του πλατους απο την εξισωση θεσης με το επιθυμητο πλατος που αντιστοιχει στο 1/10 αυτου :

A*e^(-γt) = A/10

Για t = 4 s .

e^(-4γ) = 1/10
-4γ = -ln10
γ = ln10 / 4

ή

γ = 0.576 1/s

Σημείωση: Το μήνυμα αυτό γράφτηκε 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Δεδομενου οτι τα εχεις βρει ολα,στο 2ο ερωτημα το μονο που εχεις να κανεις ειναι να εξισωσεις τον ορο :

A*e^(-γt) = A/10

Για t = 4 s .

e^(-4γ) = 1/10
-4γ = -ln10
γ = ln10 / 4

ή

γ = 0.576 1/s

Ωραία ευχαριστώ, αυτό έκανα και γω αλλά είχα ψηλοκολλησει στο οτι λέει να λυθεί θεωροντας ασθενής απόσβεσης όπου σαυτη τη περίπτωση υπάρχει η εξίσωση x(t) =exp(-γt)επι( Αsinλt+Βcosλt) όπου λ=sqrt(ω**2-γ**2)

Σημείωση: Το μήνυμα αυτό γράφτηκε 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Ωραία ευχαριστώ, αυτό έκανα και γω αλλά είχα ψηλοκολλησει στο οτι λέει να λυθεί θεωροντας ασθενής απόσβεσης όπου σαυτη τη περίπτωση υπάρχει η εξίσωση x(t) =exp(-γt)επι( Αsinλt+Βcosλt) όπου λ=sqrt(ω**2-γ**2)


Κανενα προβλημα :) .
Μην μπερδευεσαι απο το "μακρος" της εξισωσης. Η τελικη μορφη σε ενα προβλημα αρχικων τιμων θα ειναι παντα κατι της μορφης (για ασθενη ταλαντωση) :

Πλατος*Εκθετικο*τριγωνομετρικη

Το πλατος*εκθετικο αντιστοιχει στην συναρτηση του πλατους με τον χρονο.

Ο λογος που η λυση περιεχει το αθροισμα Asinλt + Bcosλt ειναι απλα επειδη αποτελει την γενικη λυση της διαφορικης εξισωσης στην οποια πρεπει να φαινονται ολοι οι συνδυασμοι λυσεων που θα μπορουσαμε να εχουμε και να ικανοποιουν την διαφορικη.
Οι σταθερες Α και Β ειναι απλα...σταθερες :P .

Σημείωση: Το μήνυμα αυτό γράφτηκε 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Κανενα προβλημα :) .
Μην μπερδευεσαι απο το "μακρος" της εξισωσης. Η τελικη μορφη σε ενα προβλημα αρχικων τιμων θα ειναι παντα κατι της μορφης (για ασθενη ταλαντωση) :

Πλατος*Εκθετικο*τριγωνομετρικη

Το πλατος*εκθετικο αντιστοιχει στην συναρτηση του πλατους με τον χρονο.

Ο λογος που η λυση περιεχει το αθροισμα Asinλt + Bcosλt ειναι απλα επειδη αποτελει την γενικη λυση της διαφορικης εξισωσης στην οποια πρεπει να φαινονται ολοι οι συνδυασμοι λυσεων που θα μπορουσαμε να εχουμε και να ικανοποιουν την διαφορικη.
Οι σταθερες Α και Β ειναι απλα...σταθερες :P .

Λεπτομερεια αλλα...
exp(-γt)[Asin(λt)+Bcos(λt)]=Cexp(-γt+iλt)+Dexp(-γt+iλt). Το χαρακτηριστικο πολυωνυμο της διαφορικης επιβαλλει την υπαρξη εκθετικου και ταλαντωτικου μερους.

Σημείωση: Το μήνυμα αυτό γράφτηκε 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 
Λεπτομερεια αλλα...
exp(-γt)[Asin(λt)+Bcos(λt)]=Cexp(-γt+iλt)+Dexp(-γt+iλt). Το χαρακτηριστικο πολυωνυμο της διαφορικης επιβαλλει την υπαρξη εκθετικου και ταλαντωτικου μερους

Σωστος η ολοκληρωση της διαφορικης απαιτει την αρχικη αναπαρασταση σε μιγαδικους ;) . Λογω της ελευθεριας που εχουμε στον ορισμο των σταθερερων,αφου μετατρεψουμε τα μιγαδικα εκθετικα σε αρνονικους ορους ,μπορουμε ευκολα να δωσουμε μια πιο λογικη απο φυσικης αποψης παρουσιαση της λυσης.

Σημείωση: Το μήνυμα αυτό γράφτηκε 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

 

Χρήστες Βρείτε παρόμοια

Back
Top