Guest 831328
Επισκέπτης
αυτή τη στιγμή δεν είναι συνδεδεμέν. Δεν έχει γράψει κανένα μήνυμα.

27-03-21

16:19
Σας έχω μια που θέλω να την λύσετε με μαθηματικά προσανατολισμού β λυκείου (καθώς λύνεται και με γ αλλά εγώ θέλω να μου βρείτε με β)
Να βρείτε τα ολικά ακρότατα της συνάρτησης:
f(x)=3ημχ - 4συνχ
Να βρείτε τα ολικά ακρότατα της συνάρτησης:
f(x)=3ημχ - 4συνχ
Samael
Τιμώμενο Μέλος
Ο Samael αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 26 ετών, Πτυχιούχος του τμήματος Ηλεκτρολόγων & Ηλεκτρονικών Μηχανικών ΠΑΔΑ και μας γράφει από Πειραιάς (Αττική). Έχει γράψει 11.436 μηνύματα.

27-03-21

17:58
Συνδυασμός μεταξύ τριγωνομετρικών συναρτήσεων ίδιας θεμελιώδους περιόδου μπορούν να εκφραστούν ως :Σας έχω μια που θέλω να την λύσετε με μαθηματικά προσανατολισμού β λυκείου (καθώς λύνεται και με γ αλλά εγώ θέλω να μου βρείτε με β)
Να βρείτε τα ολικά ακρότατα της συνάρτησης:
f(x)=3ημχ - 4συνχ
Aημ(ωx+φ) , όπου ω = 1 στην περίπτωση μας.
Άρα :
3ημx - 4συνχ = A*ημ(χ+φ)
3ημχ - 4συνχ = Α(συνφ)ημχ + Α(ημφ)συνφ
Έτσι έχουμε :
Α(συνφ) = 3 και Α(ημφ) = -4 =>
Τετραγωνίζοντας και προσθέτοντας κατά μέλη τις δυο εξισώσεις έχουμε :
A²(ημ²φ +συν²φ) = 3²+4² = 25 = 5² =>
Α² = 5² => |Α| = 5 , ας επιλέξουμε Α θετικό.
Έπειτα έχουμε : συνφ = 3/5 και ημφ = -4/5 =>
ημφ/συνφ = -(4/3) = > tan(φ) = -4/3 => φ = -53.13° ή 0.9273 σε rad.
Εν τέλει f(x) = 5ημ(x-0.9273) .
Οπότε έχουμε ακρότατα με τιμές +-5 σε θέσεις x = (2κ+1)π/2 + 0.9273 , κ Ε Z .
Guest 831328
Επισκέπτης
αυτή τη στιγμή δεν είναι συνδεδεμέν. Δεν έχει γράψει κανένα μήνυμα.

27-03-21

18:07
Συνδυασμός μεταξύ τριγωνομετρικών συναρτήσεων ίδιας θεμελιώδους περιόδου μπορούν να εκφραστούν ως :
Aημ(ωx+φ) , όπου ω = 1 στην περίπτωση μας.
Άρα :
3ημx - 4συνχ = A*ημ(χ+φ)
3ημχ - 4συνχ = Α(συνφ)ημχ + Α(ημφ)συνφ
Έτσι έχουμε :
Α(συνφ) = 3 και Α(ημφ) = -4 =>
Τετραγωνίζοντας και προσθέτοντας κατά μέλη τις δυο εξισώσεις έχουμε :
A²(ημ²φ +συν²φ) = 3²+4² = 25 = 5² =>
Α² = 5² => |Α| = 5 , ας επιλέξουμε Α θετικό.
Έπειτα έχουμε : συνφ = 3/5 και ημφ = -4/5 =>
ημφ/συνφ = -(4/3) = > tan(φ) = -4/3 => φ = -53.13° ή 0.9273 σε rad.
Εν τέλει f(x) = 5ημ(x-0.9273) .
Οπότε έχουμε ακρότατα με τιμές +-5 σε θέσεις x = (2κ+1)π/2 + 0.9273 , κ Ε Z .
Εγώ βασικά είχα σκεφτεί αυτό
Συνημμένα
Samael
Τιμώμενο Μέλος
Ο Samael αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 26 ετών, Πτυχιούχος του τμήματος Ηλεκτρολόγων & Ηλεκτρονικών Μηχανικών ΠΑΔΑ και μας γράφει από Πειραιάς (Αττική). Έχει γράψει 11.436 μηνύματα.

27-03-21

18:27
Μμ είναι σωστό, απλά too fancy για τα γούστα μου και μάλλον πάει πιο πέρα απο β λυκείου(δεδομένου οτι κάνεις χρήση της ανισότητας Schwarz)Εγώ βασικά είχα σκεφτεί αυτό


Debugging_Demon
Νεοφερμένο μέλος
Ο Debugging_Demon αυτή τη στιγμή δεν είναι συνδεδεμένος. Είναι 20 ετών και Φοιτητής του τμήματος Μηχανικών Η/Υ & Πληροφορικής Πατρών. Έχει γράψει 104 μηνύματα.

15-04-23

18:39
μήπως η προσέγγιση με τους φάσορες είναι αυτή¨:
έστω g(x)=3sinx και h(x)=4cosx σε μορφή φάσορα είναι¨: η g: 3exp(i*π/2) η h: 4exp(i*0) αν τα αφαιρέσω έχω
3exp(i*π/2)- 4exp(i*0)=3(cos(π/2)+isin(π/2))-4=3i-4=-4+i3=5((-4/5)+i(3/5))=5exp(i*arctan(-4/3)) αν μετατρέψω αυτό τον φάσορα σε τριγωνομετρική συνάρτηση είναι η 5(cos(x+arctan(-4/3)) που έχει ως μέγιστο το +5 και ελάχιστο το -5 προφανώς
έστω g(x)=3sinx και h(x)=4cosx σε μορφή φάσορα είναι¨: η g: 3exp(i*π/2) η h: 4exp(i*0) αν τα αφαιρέσω έχω
3exp(i*π/2)- 4exp(i*0)=3(cos(π/2)+isin(π/2))-4=3i-4=-4+i3=5((-4/5)+i(3/5))=5exp(i*arctan(-4/3)) αν μετατρέψω αυτό τον φάσορα σε τριγωνομετρική συνάρτηση είναι η 5(cos(x+arctan(-4/3)) που έχει ως μέγιστο το +5 και ελάχιστο το -5 προφανώς
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 18 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...